ﻻ يوجد ملخص باللغة العربية
Traditional principal component analysis (PCA) is well known in high-dimensional data analysis, but it requires to express data by a matrix with observations to be continuous. To overcome the limitations, a new method called flexible PCA (FPCA) for exponential family distributions is proposed. The goal is to ensure that it can be implemented to arbitrary shaped region for either count or continuous observations. The methodology of FPCA is developed under the framework of generalized linear models. It provides statistical models for FPCA not limited to matrix expressions of the data. A maximum likelihood approach is proposed to derive the decomposition when the number of principal components (PCs) is known. This naturally induces a penalized likelihood approach to determine the number of PCs when it is unknown. By modifying it for missing data problems, the proposed method is compared with previous PCA methods for missing data. The simulation study shows that the performance of FPCA is always better than its competitors. The application uses the proposed method to reduce the dimensionality of arbitrary shaped sub-regions of images and the global spread patterns of COVID-19 under normal and Poisson distributions, respectively.
Motivation: Although principal component analysis is frequently applied to reduce the dimensionality of matrix data, the method is sensitive to noise and bias and has difficulty with comparability and interpretation. These issues are addressed by imp
Principal Component Analysis (PCA) is a common multivariate statistical analysis method, and Probabilistic Principal Component Analysis (PPCA) is its probabilistic reformulation under the framework of Gaussian latent variable model. To improve the ro
Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlyin
We consider the problem of decomposing a large covariance matrix into the sum of a low-rank matrix and a diagonally dominant matrix, and we call this problem the Diagonally-Dominant Principal Component Analysis (DD-PCA). DD-PCA is an effective tool f
Dimension reduction for high-dimensional compositional data plays an important role in many fields, where the principal component analysis of the basis covariance matrix is of scientific interest. In practice, however, the basis variables are latent