ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge of chaos as a guiding principle for modern neural network training

179   0   0.0 ( 0 )
 نشر من قبل Ling Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The success of deep neural networks in real-world problems has prompted many attempts to explain their training dynamics and generalization performance, but more guiding principles for the training of neural networks are still needed. Motivated by the edge of chaos principle behind the optimal performance of neural networks, we study the role of various hyperparameters in modern neural network training algorithms in terms of the order-chaos phase diagram. In particular, we study a fully analytical feedforward neural network trained on the widely adopted Fashion-MNIST dataset, and study the dynamics associated with the hyperparameters in back-propagation during the training process. We find that for the basic algorithm of stochastic gradient descent with momentum, in the range around the commonly used hyperparameter values, clear scaling relations are present with respect to the training time during the ordered phase in the phase diagram, and the models optimal generalization power at the edge of chaos is similar across different training parameter combinations. In the chaotic phase, the same scaling no longer exists. The scaling allows us to choose the training parameters to achieve faster training without sacrificing performance. In addition, we find that the commonly used model regularization method - weight decay - effectively pushes the model towards the ordered phase to achieve better performance. Leveraging on this fact and the scaling relations in the other hyperparameters, we derived a principled guideline for hyperparameter determination, such that the model can achieve optimal performance by saturating it at the edge of chaos. Demonstrated on this simple neural network model and training algorithm, our work improves the understanding of neural network training dynamics, and can potentially be extended to guiding principles of more complex model architectures and algorithms.

قيم البحث

اقرأ أيضاً

The ever-growing computational demands of increasingly complex machine learning models frequently necessitate the use of powerful cloud-based infrastructure for their training. Binary neural networks are known to be promising candidates for on-device inference due to their extreme compute and memory savings over higher-precision alternatives. However, their existing training methods require the concurrent storage of high-precision activations for all layers, generally making learning on memory-constrained devices infeasible. In this paper, we demonstrate that the backward propagation operations needed for binary neural network training are strongly robust to quantization, thereby making on-the-edge learning with modern models a practical proposition. We introduce a low-cost binary neural network training strategy exhibiting sizable memory footprint and energy reductions while inducing little to no accuracy loss vs Courbariaux & Bengios standard approach. These resource decreases are primarily enabled through the retention of activations exclusively in binary format. Against the latter algorithm, our drop-in replacement sees coincident memory requirement and energy consumption drops of 2--6$times$, while reaching similar test accuracy in comparable time, across a range of small-scale models trained to classify popular datasets. We also demonstrate from-scratch ImageNet training of binarized ResNet-18, achieving a 3.12$times$ memory reduction. Such savings will allow for unnecessary cloud offloading to be avoided, reducing latency, increasing energy efficiency and safeguarding privacy.
In recent years, the prosperity of deep learning has revolutionized the Artificial Neural Networks. However, the dependence of gradients and the offline training mechanism in the learning algorithms prevents the ANN for further improvement. In this s tudy, a gradient-free training framework based on data assimilation is proposed to avoid the calculation of gradients. In data assimilation algorithms, the error covariance between the forecasts and observations is used to optimize the parameters. Feedforward Neural Networks (FNNs) are trained by gradient decent, data assimilation algorithms (Ensemble Kalman Filter (EnKF) and Ensemble Smoother with Multiple Data Assimilation (ESMDA)), respectively. ESMDA trains FNN with pre-defined iterations by updating the parameters using all the available observations which can be regard as offline learning. EnKF optimize FNN when new observation available by updating parameters which can be regard as online learning. Two synthetic cases with the regression of a Sine Function and a Mexican Hat function are assumed to validate the effectiveness of the proposed framework. The Root Mean Square Error (RMSE) and coefficient of determination (R2) are used as criteria to assess the performance of different methods. The results show that the proposed training framework performed better than the gradient decent method. The proposed framework provides alternatives for online/offline training the existing ANNs (e.g., Convolutional Neural Networks, Recurrent Neural Networks) without the dependence of gradients.
We propose a novel technique for faster DNN training which systematically applies sample-based approximation to the constituent tensor operations, i.e., matrix multiplications and convolutions. We introduce new sampling techniques, study their theore tical properties, and prove that they provide the same convergence guarantees when applied to SGD DNN training. We apply approximate tensor operations to single and multi-node training of MLP and CNN networks on MNIST, CIFAR-10 and ImageNet datasets. We demonstrate up to 66% reduction in the amount of computations and communication, and up to 1.37x faster training time while maintaining negligible or no impact on the final test accuracy.
Neural networks have recently become popular for a wide variety of uses, but have seen limited application in safety-critical domains such as robotics near and around humans. This is because it remains an open challenge to train a neural network to o bey safety constraints. Most existing safety-related methods only seek to verify that already-trained networks obey constraints, requiring alternating training and verification. Instead, this work proposes a constrained method to simultaneously train and verify a feedforward neural network with rectified linear unit (ReLU) nonlinearities. Constraints are enforced by computing the networks output-space reachable set and ensuring that it does not intersect with unsafe sets; training is achieved by formulating a novel collision-check loss function between the reachable set and unsafe portions of the output space. The reachable and unsafe sets are represented by constrained zonotopes, a convex polytope representation that enables differentiable collision checking. The proposed method is demonstrated successfully on a network with one nonlinearity layer and approximately 50 parameters.
94 - Kanya Mo 2021
The fully connected (FC) layer, one of the most fundamental modules in artificial neural networks (ANN), is often considered difficult and inefficient to train due to issues including the risk of overfitting caused by its large amount of parameters. Based on previous work studying ANN from linear spline perspectives, we propose a spline-based approach that eases the difficulty of training FC layers. Given some dataset, we first obtain a continuous piece-wise linear (CPWL) fit through spline methods such as multivariate adaptive regression spline (MARS). Next, we construct an ANN model from the linear spline model and continue to train the ANN model on the dataset using gradient descent optimization algorithms. Our experimental results and theoretical analysis show that our approach reduces the computational cost, accelerates the convergence of FC layers, and significantly increases the interpretability of the resulting model (FC layers) compared with standard ANN training with random parameter initialization followed by gradient descent optimizations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا