ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized image of a Schwarzschild black hole with a thin accretion disk as photon couples to Weyl tensor

92   0   0.0 ( 0 )
 نشر من قبل Chen Songbai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied polarized image of a Schwarzschild black hole with an equatorial thin accretion disk as photon couples to Weyl tensor. The birefringence of photon originating from the coupling affect the black hole shadow, the thin disk pattern and its luminosity distribution. We also analyze the observed polarized intensity in the sky plane. The observed polarized intensity in the bright region is stronger than that in the darker region. The stronger effect of the coupling on the observed polarized vector appears only in the bright region close to black hole. These features in the polarized image could help us to understand black hole shadow, the thin accretion disk and the coupling between photon and Weyl tensor.

قيم البحث

اقرأ أيضاً

We study the optical appearance of a thin accretion disk around a Schwarzschild black hole pierced by a cosmic string with a semi-analytic method of Luminet [11]. Direct and secondary images with different parameters observed by a distant observer is plotted. The cosmic string parameter s can modify the shape and size of the thin disk image. We calculate and plot the distribution of both redshift and observed flux as seen by distant observers at different inclination angles. Those distributions are dependent on the inclination angel of the observer and cosmic parameter s.
In this paper, we first consider null geodesics of a class of charged, spherical and asymptotically flat hairy black holes in an Einstein-Maxwell-scalar theory with a non-minimal coupling for the scalar and electromagnetic fields. Remarkably, we show that there are two unstable circular orbits for a photon in a certain parameter regime, corresponding to two unstable photon spheres of different sizes outside the event horizon. To illustrate the optical appearance of photon spheres, we then consider a simple spherical model of optically thin accretion on the hairy black hole, and obtain the accretion image seen by a distant observer. In the single photon sphere case, only one bright ring appears in the image, and is identified as the edge of the black hole shadow. Whereas in the case with two photon spheres, there can be two concentric bright rings of different radii in the image, and the smaller one serves as the boundary of the shadow, whose radius goes to zero at the critical charge.
We have studied the shadows of a Schwarzschild black hole surrounded by a Bach-Weyl ring through the backward ray-tracing method. The presence of Bach-Weyl ring leads to that the photon dynamical system is non-integrable and then chaos would appear i n the photon motion, which affects sharply the black hole shadow. The size and shape the black hole shadow depend on the black hole parameter, the Bach-Weyl ring mass and the Weyl radius between black hole and ring. Some self-similar fractal structures also appear in the black hole shadow, which originates from the chaotic lensing. We also study the change of the image of Bach-Weyl ring with the ring mass and the Weyl radius. Finally, we analyze the invariant manifolds of Lyapunov orbits near the fixed points and discuss further the formation of the shadow of a Schwarzschild black hole with Bach-Weyl ring.
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential, and a toy model for the time-dependent evol ution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.
We formulate and solve the problem of spherically symmetric, steady state, adiabatic accretion onto a Schwarzschild-like black hole obtained recently. We derive the general analytic expressions for the critical points, the critical velocity, the crit ical speed of sound, and subsequently the mass accretion rate. The case for polytropic gas is discussed in detail. We find the parameter characterizing the breaking of Lorentz symmetry will slow down the mass accretion rate, while has no effect on the gas compression and the temperature profile below the critical radius and at the event horizon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا