ﻻ يوجد ملخص باللغة العربية
Master equations are partial differential equations for measure-dependent unknowns, and are introduced to describe asymptotic equilibrium of large scale mean-field interacting systems, especially in games and control theory. In this paper we introduce new semilinear master equations whose unknowns are functionals of both paths and path measures. They include state-dependent master equations, path-dependent partial differential equations (PPDEs), history information dependent master equations and time inconsistent (e.g. time-delayed) equations, which naturally arise in stochastic control theory and games. We give a classical solution to the master equation by introducing a new notation called strong vertical derivative (SVD) for path-dependent functionals, inspired by Dupires vertical derivative, and applying stochastic forward-backward system argument. Moreover, we consider a general non-smooth case with a functional mollifying method.
We prove existence and uniqueness of strong solutions for a class of semilinear stochastic evolution equations driven by general Hilbert space-valued semimartingales, with drift equal to the sum of a linear maximal monotone operator in variational fo
In this paper, to cope with the shortage of sufficient theoretical support resulted from the fast-growing quantitative financial modeling, we investigate two classes of generalized stochastic volatility models, establish their well-posedness of stron
We study the Hardy-Henon parabolic equations on $mathbb{R}^{N}$ ($N=2, 3$) under the effect of an additive fractional Brownian noise with Hurst parameter $H>maxleft(1/2, N/4right).$ We show local existence and uniqueness of a mid $L^{q}$-solution under suitable assumptions on $q$.
We investigate the well-posedness of the fast diffusion equation (FDE) in a wide class of noncompact Riemannian manifolds. Existence and uniqueness of solutions for globally integrable initial data was established in [5]. However, in the Euclidean sp
In this paper, we investigate the problem of optimal regularity for derivative semilinear wave equations to be locally well-posed in $H^{s}$ with spatial dimension $n leq 5$. We show this equation, with power $2le ple 1+4/(n-1)$, is (strongly) ill-po