ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent formal classifications of crystalline topological insulators predict that the combination of time-reversal and rotational symmetry gives rise to topological invariants beyond the ones known for other lattice symmetries. Although the classifica tion proves their existence, it does not indicate a way of calculating the values of those invariants. Here, we show that a specific set of concentric Wilson loops and line invariants yields the values of all topological invariants in two-dimensional systems with pure rotation symmetry in class AII. Examples of this analysis are given for specific models with two-fold and three-fold rotational symmetry. We find new invariants that correspond to the presence of higher-order topology and corner charges.
We study the entanglement entropy of free fermions in 2d in the presence of a partially transmitting interface that splits Minkowski space into two half-spaces. We focus on the case of a single interval that straddles the defect, and compute its enta nglement entropy in three limits: Perturbing away from the fully transmitting and fully reflecting cases, and perturbing in the amount of asymmetry of the interval about the defect. Using these results within the setup of the Poincare patch of AdS$_2$ statically coupled to a zero temperature flat space bath, we calculate the effect of a partially transmitting AdS$_2$ boundary on the location of the entanglement island region. The partially transmitting boundary is a toy model for black hole graybody factors. Our results indicate that the entanglement island region behaves in a monotonic fashion as a function of the transmission/reflection coefficient at the interface.
We study density matrices in quantum gravity, focusing on topology change. We argue that the inclusion of bra-ket wormholes in the gravity path integral is not a free choice, but is dictated by the specification of a global state in the multi-univers e Hilbert space. Specifically, the Hartle-Hawking (HH) state does not contain bra-ket wormholes. It has recently been pointed out that bra-ket wormholes are needed to avoid potential bags-of-gold and strong subadditivity paradoxes, suggesting a problem with the HH state. Nevertheless, in regimes with a single large connected universe, approximate bra-ket wormholes can emerge by tracing over the unobserved universes. More drastic possibilities are that the HH state is non-perturbatively gauge equivalent to a state with bra-ket wormholes, or that the third-quantized Hilbert space is one-dimensional. Along the way we draw some helpful lessons from the well-known relation between worldline gravity and Klein-Gordon theory. In particular, the commutativity of boundary-creating operators, which is necessary for constructing the alpha states and having a dual ensemble interpretation, is subtle. For instance, in the worldline gravity example, the Klein-Gordon field operators do not commute at timelike separation.
The gravitational dual to the grand canonical ensemble of a large $N$ holographic theory is a charged black hole. These spacetimes -- for example Reissner-Nordstrom-AdS -- can have Cauchy horizons that render the classical gravitational dynamics of t he black hole interior incomplete. We show that a (spatially uniform) deformation of the CFT by a neutral scalar operator generically leads to a black hole with no inner horizon. There is instead a spacelike Kasner singularity in the interior. For relevant deformations, Cauchy horizons never form. For certain irrelevant deformations, Cauchy horizons can exist at one specific temperature. We show that the scalar field triggers a rapid collapse of the Einstein-Rosen bridge at the would-be Cauchy horizon. Finally, we make some observations on the interior of charged dilatonic black holes where the Kasner exponent at the singularity exhibits an attractor mechanism in the low temperature limit.
Large $N$ matrix quantum mechanics is central to holographic duality but not solvable in the most interesting cases. We show that the spectrum and simple expectation values in these theories can be obtained numerically via a `bootstrap methodology. I n this approach, operator expectation values are related by symmetries -- such as time translation and $SU(N)$ gauge invariance -- and then bounded with certain positivity constraints. We first demonstrate how this method efficiently solves the conventional quantum anharmonic oscillator. We then reproduce the known solution of large $N$ single matrix quantum mechanics. Finally, we present new results on the ground state of large $N$ two matrix quantum mechanics.
The Schwarzschild singularity is known to be classically unstable. We demonstrate a simple holographic consequence of this fact, focusing on a perturbation that is uniform in boundary space and time. Deformation of the thermal state of the dual CFT b y a relevant operator triggers a nonzero temperature holographic renormalization group flow in the bulk. This flow continues smoothly through the horizon and, at late interior time, deforms the Schwarzschild singularity into a more general Kasner universe. We show that the deformed near-singularity, trans-horizon Kasner exponents determine specific non-analytic corrections to the thermal correlation functions of heavy operators in the dual CFT, in the analytically continued `near-singularity regime.
We study quantum corrections to holographic entanglement entropy in AdS$_3$/CFT$_2$; these are given by the bulk entanglement entropy across the Ryu-Takayanagi surface for all fields in the effective gravitational theory. We consider bulk $U(1)$ gaug e fields and gravitons, whose dynamics in AdS$_3$ are governed by Chern-Simons terms and are therefore topological. In this case the relevant Hilbert space is that of the edge excitations. A novelty of the holographic construction is that such modes live not only on the bulk entanglement cut but also on the AdS boundary. We describe the interplay of these excitations and provide an explicit map to the appropriate extended Hilbert space. We compute the bulk entanglement entropy for the CFT vacuum state and find that the effect of the bulk entanglement entropy is to renormalize the relation between the effective holographic central charge and Newtons constant. We also consider excited states obtained by acting with the $U(1)$ current on the vacuum, and compute the difference in bulk entanglement entropy between these states and the vacuum. We compute this UV-finite difference both in the bulk and in the CFT finding a perfect agreement.
We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure. The algorithm applies to crystals with broken time-reversal, particle-hole, and chiral symmetries in any dimension. The presented results match the mathematical structure underlying the topological classification of these crystals in terms of K-theory, and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify the allowed topological phases in any possible two-dimensional crystal in class A. We also show how the same procedure can be used to classify the allowed phases for any three-dimensional space group. Employing these classifications, we study transitions between topological phases within class A that are driven by band
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا