ﻻ يوجد ملخص باللغة العربية
We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure. The algorithm applies to crystals with broken time-reversal, particle-hole, and chiral symmetries in any dimension. The presented results match the mathematical structure underlying the topological classification of these crystals in terms of K-theory, and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify the allowed topological phases in any possible two-dimensional crystal in class A. We also show how the same procedure can be used to classify the allowed phases for any three-dimensional space group. Employing these classifications, we study transitions between topological phases within class A that are driven by band
Here, we analyse two Dirac fermion species in two spatial dimensions in the presence of general quartic contact interactions. By employing functional bosonisation techniques, we demonstrate that depending on the couplings of the fermion interactions
We show that in the presence of $n$-fold rotation symmetries and time-reversal symmetry, the number of fermion flavors must be a multiple of $2n$ ($n=2,3,4,6$) on two-dimensional lattices, a stronger version of the well-known fermion doubling theorem
In this work, we identify a new class of Z2 topological insulator protected by non-symmorphic crystalline symmetry, dubbed a topological non-symmorphic crystalline insulator. We construct a concrete tight-binding model with the non-symmorphic space g
Periodically driven systems can host so called anomalous topological phases, in which protected boundary states coexist with topologically trivial Floquet bulk bands. We introduce an anomalous version of reflection symmetry protected topological crys
We introduce a coupled-layer construction to describe three-dimensional topological crystalline insulators protected by reflection symmetry. Our approach uses stacks of weakly-coupled two-dimensional Chern insulators to produce topological crystallin