ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrapping Matrix Quantum Mechanics

151   0   0.0 ( 0 )
 نشر من قبل Sean A. Hartnoll
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Large $N$ matrix quantum mechanics is central to holographic duality but not solvable in the most interesting cases. We show that the spectrum and simple expectation values in these theories can be obtained numerically via a `bootstrap methodology. In this approach, operator expectation values are related by symmetries -- such as time translation and $SU(N)$ gauge invariance -- and then bounded with certain positivity constraints. We first demonstrate how this method efficiently solves the conventional quantum anharmonic oscillator. We then reproduce the known solution of large $N$ single matrix quantum mechanics. Finally, we present new results on the ground state of large $N$ two matrix quantum mechanics.



قيم البحث

اقرأ أيضاً

95 - Denis Karateev , Simon Kuhn , 2019
We propose a new non-perturbative method for studying UV complete unitary quantum field theories (QFTs) with a mass gap in general number of spacetime dimensions. The method relies on unitarity formulated as positive semi-definiteness of the matrix o f inner products between asymptotic states (in and out) and states created by the action of local operators on the vacuum. The corresponding matrix elements involve scattering amplitudes, form factors and spectral densities of local operators. We test this method in two-dimensional QFTs by setting up a linear optimization problem that gives a lower bound on the central charge of the UV CFT associated to a QFT with a given mass spectrum of stable particles (and couplings between them). Some of our numerical bounds are saturated by known form factors in integrable theories like the sine-Gordon, E8 and O(N) models.
Quantum extremal surfaces are central to the connection between quantum information theory and quantum gravity and they have played a prominent role in the recent progress on the information paradox. We initiate a program to systematically link these surfaces to the microscopic data of the dual conformal field theory, namely the scaling dimensions of local operators and their OPE coefficients. We consider CFT states obtained by acting on the vacuum with single-trace operators, which are dual to one-particle states of the bulk theory. Focusing on AdS$_3$/CFT$_2$, we compute the CFT entanglement entropy to second order in the large $c$ expansion where quantum extremality becomes important and match it to the expectation value of the bulk area operator. We show that to this order, the Virasoro identity block contributes solely to the area operator.
We study the conformal bootstrap for a 4-point function of fermions $langlepsipsipsipsirangle$ in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these result s, we find general bounds on the dimensions of operators appearing in the $psi times psi$ OPE, and also on the central charge $C_T$. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large $N$. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
In PRL 116 (2016) no.6, 062001, the space of planar pentagon functions that describes all two-loop on-shell five-particle scattering amplitudes was introduced. In the present paper we present a natural extension of this space to non-planar pentagon f unctions. This provides the basis for our pentagon bootstrap program. We classify the relevant functions up to weight four, which is relevant for two-loop scattering amplitudes. We constrain the first entry of the symbol of the functions using information on branch cuts. Drawing on an analogy from the planar case, we introduce a conjectural second-entry condition on the symbol. We then show that the information on the function space, when complemented with some additional insights, can be used to efficiently bootstrap individual Feynman integrals. The extra information is read off of Mellin-Barnes representations of the integrals, either by evaluating simple asymptotic limits, or by taking discontinuities in the kinematic variables. We use this method to evaluate the symbols of two non-trivial non-planar five-particle integrals, up to and including the finite part.
318 - Ashok Das , H. Falomir , J. Gamboa 2008
General non-commutative supersymmetric quantum mechanics models in two and three dimensions are constructed and some two and three dimensional examples are explicitly studied. The structure of the theory studied suggest other possible applications in physical systems with potentials involving spin and non-local interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا