ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a two-channel tunneling model to generalize the widely used BTK theory of point-contact conductance between a normal metal contact and superconductor. Tunneling of electrons can occur via localized surface states or directly, resulting i n a Fano resonance in the differential conductance $G=dI/dV$. We present an analysis of $G$ within the two-channel model when applied to soft point-contacts between normal metallic silver particles and prototypical heavy-fermion superconductors CeCoIn$_5$ and CeRhIn$_5$ at high pressures. In the normal state the Fano line shape of the measured $G$ is well described by a model with two tunneling channels and a large temperature-independent background conductance. In the superconducting state a strongly suppressed Andreev reflection signal is explained by the presence of the background conductance. We report Andreev signal in CeCoIn$_5$ consistent with standard $d_{x^2-y^2}$-wave pairing, assuming an equal mixture of tunneling into [100] and [110] crystallographic interfaces. Whereas in CeRhIn$_5$ at 1.8 and 2.0 GPa the signal is described by a $d_{x^2-y^2}$-wave gap with reduced nodal region, i.e., increased slope of the gap opening on the Fermi surface. A possibility is that the shape of the high-pressure Andreev signal is affected by the proximity of a line of quantum critical points that extends from 1.75 to 2.3 GPa, which is not accounted for in our description of the heavy-fermion superconductor.
The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed $X$-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flu x conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the $X$-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Amperes law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of $X$-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.
We present resistivity, magnetization, and zero field muon spin relaxation ($mu$SR) data for the pyrochlore iridate materials Nd$_{2-x}$Ca$_{x}$Ir$_{2}$O$_{7}$ ($x = 0, 0.06$, and $0.10$) and Sm$_2$Ir$_2$O$_7$. While Nd$_{2}$Ir$_{2}$O$_{7}$ (Nd227) i s weakly conducting, Sm$_{2}$Ir$_{2}$O$_{7}$ (Sm227) has slowly diverging resistivity at low temperature. Nd227 and Sm227 exhibit magnetic anomalies at $T_{M} = 105 K$ and $137 K$, respectively. However, zero-field $mu$SR measurements show that long-range magnetic order of the Ir$^{4+}$ sublattice sets in at much lower temperatures ($T_{LRO} sim 8 K$ for Nd227 and $70 K$ for Sm227); both materials show heavily damped muon precession with a characteristic frequency near 9 MHz. The magnetic anomaly at $T_{M}$ in Nd227 is not significantly affected by the introduction of hole carriers by Ca-substitution in the conducting Nd$_{2-x}$Ca$_{x}$Ir$_{2}$O$_{7}$ samples, but the muon precession is fully suppressed for both.
The electronic band structure of iron pnictides exhibits four Dirac cones, which are due to crystal symmetry and orbital bonding orientation. This hallmark signature presents the pnictide family as an ideal candidate in the search for quasi-two-dimen sional topological crystalline insulators. In this report, we explore interaction-induced topological phases which cannot be described by conventional local order parameters. Based on a model Hamiltonian our symmetry analysis shows that sponta- neous novel topological phases may be realized in compounds with tetragonal crystal field symmetry, where the electrons occupy the two degenerate t2g energy levels at low temperature. We identify two stable topological phases in the ground state, which emerge from spontaneous orbital current order. These currents are driven by electronic correlations caused by inter-orbital Coulomb interactions. The first topological phase is an anomalous orbital Hall phase, characterized by a nonzero Chern number, while the second topological phase has a vanishing Chern number, though with an extra Z2-like invariant that preserves parity. More specifically, the interaction-induced novel phase of the quasi-two-dimensional topological crystalline insulator is protected by mirror reflection symmetries and therefore may be realized in pnictides.
Using low-temperature scanning tunneling microscopy and spectroscopy, we have studied the proximity effect at the interfaces between superconducting Pb island structures and metallic Pb-induced striped-incommensurate phase formed on a Si(111) substra te. Our real-space observation revealed that the step structures on the two-dimensional metallic layer exhibit significant roles on the propagation of the superconducting pair correlation; the proximity effect is terminated by the steps, and in the confined area by the interface and the steps the effect is enhanced. The observed results are explained quantitatively with an elastic reflection of electrons at the step edges based on calculations with the quasi-classical Greens function formulation using Usadel equation.
Works of D. Tsiklauri, T. Haruki, Phys. of Plasmas, 15, 102902 (2008) and D. Tsiklauri and T. Haruki, Phys. of Plasmas, 14, 112905, (2007) are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection duri ng collisionless, stressed $X$-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. Cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved respectively. It is found that reconnection rates and out-of-plane currents in the $X$-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current increases for low guide-fields but then decreases similarly. In the open boundary case, for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the $X$-point are found, ranging in frequency from approximately 1 to 2 $omega_{pe}$ and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern. Mapping the out-of-plane electric field over time and applying 2D Fourier transforms reveals that the waves predominantly correspond to the ordinary mode and may correspond to observable radio waves such as solar radio burst fine structure spikes.
In their Letter, Haziot et al. [Phys. Rev. Lett. 110 (2013) 035301] report a novel phenomenon of giant plasticity for hcp Helium-4 quantum crystals. They assert that Helium-4 exhibits mechanical properties not found in classical plasticity theory. Sp ecifically, they examine high-quality crystals as a function of temperature and applied strain, where the shear modulus reaches a plateau and dissipation becomes close to zero; both quantities are reported to be independent of stress and strain, implying a reversible dissipation process and quantum tunneling. In this Comment, we show that these signatures can be explained with a classical model of thermally activated dislocation glide without the need to invoke quantum tunneling or dissipationless motion. Recently, we proposed a dislocation glide model in solid Helium-4 containing the dissipation contribution in the presence of other dislocations with qualitatively similar behavior [Zhou et al., Philos. Mag. Lett. 92 (2012) 608].
We develop a model for the gliding of dislocations and plasticity in solid He-4. This model takes into account the Peierls barrier, multiplication and interaction of dislocations, as well as classical thermally and mechanically activated processes le ading to dislocation glide. We specifically examine the dc stress-strain curve and how it is affected by temperature, strain rate, and dislocation density. As a function of temperature and shear strain, we observe plastic deformation and discuss how this may be related to the experimental observation of elastic anomalies in solid hcp He-4 that have been discussed in connection with the possibility of supersolidity or giant plasticity. Our theory gives several predictions for the dc stress strain curves, for example, the yield point and the change in the work-hardening rate and plastic dissipation peak, that can be compared directly to constant strain rate experiments and thus provide bounds on model parameters.
We develop a minimal multiorbital tight-binding model with realistic hopping parameters. The model breaks the symmetry of the tetragonal point group by lowering it from $C_4$ to $D_{2d}$, which accurately describes the Fermi surface evolution of the electron-doped BaFe$_{2-x}$Co$_x$As$_2$ and hole-doped Ba$_{1-y}$K$_y$Fe$_2$As$_2$ compounds. An investigation of the phase diagram with a mean-field $t$-$U$-$V$ Bogoliubov-de Gennes Hamiltonian results in agreement with the experimentally observed electron- and hole-doped phase diagram with only one set of $t$, $U$ and $V$ parameters. Additionally, the self-consistently calculated superconducting order parameter exhibits $s^pm$-wave pairing symmetry with a small d-wave pairing admixture in the entire doping range, % The superconducting $s^pm + d$-wave order parameter which is the subtle result of the weakly broken symmetry and competing interactions in the multiorbital mean-field Hamiltonian.
We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا