ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of doped BaFe$_2$As$_2$ superconductor under broken $C_4$ symmetry

114   0   0.0 ( 0 )
 نشر من قبل Yuan-Yen Tai
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a minimal multiorbital tight-binding model with realistic hopping parameters. The model breaks the symmetry of the tetragonal point group by lowering it from $C_4$ to $D_{2d}$, which accurately describes the Fermi surface evolution of the electron-doped BaFe$_{2-x}$Co$_x$As$_2$ and hole-doped Ba$_{1-y}$K$_y$Fe$_2$As$_2$ compounds. An investigation of the phase diagram with a mean-field $t$-$U$-$V$ Bogoliubov-de Gennes Hamiltonian results in agreement with the experimentally observed electron- and hole-doped phase diagram with only one set of $t$, $U$ and $V$ parameters. Additionally, the self-consistently calculated superconducting order parameter exhibits $s^pm$-wave pairing symmetry with a small d-wave pairing admixture in the entire doping range, % The superconducting $s^pm + d$-wave order parameter which is the subtle result of the weakly broken symmetry and competing interactions in the multiorbital mean-field Hamiltonian.



قيم البحث

اقرأ أيضاً

192 - Swee K. Goh , Y. Nakai , K. Ishida 2010
Magnetic measurements on optimally doped single crystals of BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ ($xapprox0.35$) with magnetic fields applied along different crystallographic axes were performed under pressure, enabling the pressure evolution of coherence lengths and the anisotropy factor to be followed. Despite a decrease in the superconducting critical temperature, our studies reveal that the superconducting properties become more anisotropic under pressure. With appropriate scaling, we directly compare these properties with the values obtained for BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ as a function of phosphorus content.
Systematic measurements of the resistivity, heat capacity, susceptibility and Hall coefficient are presented for single crystal samples of the electron-doped superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. These data delineate an $x-T$ phase diagram i n which the single magnetic/structural phase transition that is observed for undoped BaFe$_2$As$_2$ at 134 K apparently splits into two distinct phase transitions, both of which are rapidly suppressed with increasing Co concentration. Superconductivity emerges for Co concentrations above $x sim 0.025$, and appears to coexist with the broken symmetry state for an appreciable range of doping, up to $x sim 0.06$. The optimal superconducting transition temperature appears to coincide with the Co concentration at which the magnetic/structural phase transitions are totally suppressed, at least within the resolution provided by the finite step size between crystals prepared with different doping levels. Superconductivity is observed for a further range of Co concentrations, before being completely suppressed for $x sim 0.018$ and above. The form of this $x-T$ phase diagram is suggestive of an association between superconductivity and a quantum critical point arising from suppression of the magnetic and/or structural phase transitions.
180 - D. Nakamura , Y. Imai , A. Maeda 2009
We investigated the complex conductivity spectrum of a Co-doped BaFe$_2$As$_2$ epitaxial thin film in the THz region. In the normal state, the complex conductivity shows a Drude-type frequency dependence, while in the superconducting state, the frequ ency dependence of the complex conductivity changes to that of a typical superconducting materials. We estimated the magnetic penetration depth at absolute zero to be 710 nm and the superconducting gap energy to be 2.8 meV, which is considered to be the superconducting gap opened at the electron-type Fermi surface near the M point. We succeeded in obtaining the low-energy elementary excitation of a Fe-based superconductor using the electromagnetic method without invoking the Kramers-Kronig transformation.
Inelastic neutron scattering measurements on Ba(Fe$_{0.963}$Ni$_{0.037}$)$_2$As$_2$ manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at Q$_{AFM}$ a long the orthorhombic a axis, the resonance disperses upwards away from Q$_{AFM}$ along the b axis. In contrast to the downward dispersing resonance and hour-glass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe$_2$As$_2$ compounds possesses a magnon-like upwards dispersion.
In many classes of unconventional superconductors, the question of whether the superconductivity is enhanced by the quantum-critical fluctuations on the verge of an ordered phase remains elusive. One of the most direct ways of addressing this issue i s to investigate how the superconducting dome traces a shift of the ordered phase. Here, we study how the phase diagram of the iron-based superconductor BaFe$_2$(As$_{1-x}$P$_x$)$_2$ changes with disorder via electron irradiation, which keeps the carrier concentrations intact. With increasing disorder, we find that the magneto-structural transition is suppressed, indicating that the critical concentration is shifted to the lower side. Although the superconducting transition temperature $T_c$ is depressed at high concentrations ($xgtrsim$0.28), it shows an initial increase at lower $x$. This implies that the superconducting dome tracks the shift of the antiferromagnetic phase, supporting the view of the crucial role played by quantum-critical fluctuations in enhancing superconductivity in this iron-based high-$T_c$ family.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا