ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent topological mirror insulator in t2g-orbital systems

193   0   0.0 ( 0 )
 نشر من قبل Yuan-Yen Tai
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic band structure of iron pnictides exhibits four Dirac cones, which are due to crystal symmetry and orbital bonding orientation. This hallmark signature presents the pnictide family as an ideal candidate in the search for quasi-two-dimensional topological crystalline insulators. In this report, we explore interaction-induced topological phases which cannot be described by conventional local order parameters. Based on a model Hamiltonian our symmetry analysis shows that sponta- neous novel topological phases may be realized in compounds with tetragonal crystal field symmetry, where the electrons occupy the two degenerate t2g energy levels at low temperature. We identify two stable topological phases in the ground state, which emerge from spontaneous orbital current order. These currents are driven by electronic correlations caused by inter-orbital Coulomb interactions. The first topological phase is an anomalous orbital Hall phase, characterized by a nonzero Chern number, while the second topological phase has a vanishing Chern number, though with an extra Z2-like invariant that preserves parity. More specifically, the interaction-induced novel phase of the quasi-two-dimensional topological crystalline insulator is protected by mirror reflection symmetries and therefore may be realized in pnictides.

قيم البحث

اقرأ أيضاً

A Z2 topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction driven band inversion. For example, the topological phase in the Bi-Sb system is due to an odd number of band
The concept of topological insulator (TI) has introduced a new point of view to condensed-matter physics, relating a priori unrelated subfields such as quantum (spin, anomalous) Hall effects, spin-orbit coupled materials, some classes of nodal superc onductors and superfluid $^3$He, etc. From a technological point of view, topological insulator is expected to serve as a platform for realizing dissipationless transport in a non-superconducting context. The topological insulator exhibits a gapless surface state with a characteristic conic dispersion (a surface Dirac cone). Here, we review peculiar finite-size effects applicable to such surface states in TI nanostructures. We highlight the specific electronic properties of TI nanowires and nanoparticles, and in this context contrast the cases of weak and strong TIs. We study robustness of the surface and the bulk of TIs against disorder, addressing the physics of Dirac and Weyl semimetals as a new perspective of research in the field.
The realization of the quantum spin Hall effect in HgTe quantum wells has led to the development of topological materials which, in combination with magnetism and superconductivity, are predicted to host chiral Majorana fermions. However, the large m agnetization ($sim$ a few tesla) in conventional quantum anomalous Hall system, makes it challenging to induce superconductivity. Here, we report two different emergent quantum Hall effects in HgTe quantum wells dilutely alloyed with Mn. Firstly, a novel quantum Hall state emerges from the quantum spin Hall state at an exceptionally low magnetic field of $sim 50$ mT. Secondly, tuning towards the bulk $p$-regime, we resolve multiple quantum Hall plateaus at fields as low as $20 - 30$ mT, where transport is dominated by a van Hove singularity in the valence band. These emergent quantum Hall phenomena rely critically on the topological band structure of HgTe and their occurrence at very low fields make them an ideal candidate for interfacing with superconductors to realize chiral Majorana fermions.
Topological insulators represent a new quantum state of matter that are insulating in the bulk but metallic on the edge or surface. In the Dirac surface state, it is well-established that the electron spin is locked with the crystal momentum. Here we report a new phenomenon of the spin texture locking with the orbital texture in a topological insulator Bi2Se3. We observe light-polarization-dependent spin texture of both the upper and lower Dirac cones that constitutes strong evidence of the orbital-dependent spin texture in Bi2Se3. The different spin texture detected in variable polarization geometry is the manifestation of the spin-orbital texture in the initial state combined with the photoemission matrix element effects. Our observations provide a new orbital degree of freedom and a new way of light manipulation in controlling the spin structure of the topological insulators that are important for their future applications in spin-related technologies.
Recently, a new class of second-order topological insulators (SOTIs) characterized by an electronic dipole has been theoretically introduced and proposed to host topological corner states. As a novel topological state, it has been attracting great in terest and experimentally realized in artificial systems of various fields of physics based on multi-sublattice models, e.g., breathing kagome lattice. In order to realize such kind of SOTI in natural materials, we proposed a symmetry-faithful multi-orbital model. Then, we reveal several familiar transition metal dichalcogenide (TMD) monolayers as a material family of two-dimensional SOTI with large bulk gaps. The topologically protected corner state with fractional charge is pinned at Fermi level due to the charge neutrality and filling anomaly. Additionally, we propose that the zero-energy corner state preserves in the heterostructure composed of a topological nontrivial flake embedded in a trivial material. The novel second-order corner states in familiar TMD materials hold promise for revealing unexpected quantum properties and applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا