ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Giant Plasticity of a Quantum Crystal

378   0   0.0 ( 0 )
 نشر من قبل Matthias J. Graf
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In their Letter, Haziot et al. [Phys. Rev. Lett. 110 (2013) 035301] report a novel phenomenon of giant plasticity for hcp Helium-4 quantum crystals. They assert that Helium-4 exhibits mechanical properties not found in classical plasticity theory. Specifically, they examine high-quality crystals as a function of temperature and applied strain, where the shear modulus reaches a plateau and dissipation becomes close to zero; both quantities are reported to be independent of stress and strain, implying a reversible dissipation process and quantum tunneling. In this Comment, we show that these signatures can be explained with a classical model of thermally activated dislocation glide without the need to invoke quantum tunneling or dissipationless motion. Recently, we proposed a dislocation glide model in solid Helium-4 containing the dissipation contribution in the presence of other dislocations with qualitatively similar behavior [Zhou et al., Philos. Mag. Lett. 92 (2012) 608].



قيم البحث

اقرأ أيضاً

Despite decades of extensive research on mechanical properties of diamond, much remains to be understood in term of plastic deformation mechanisms due to the poor deformability at room temperature. In a recent work in Advanced Materials, it was claim ed that room-temperature plasticity occurred in <001>-oriented single-crystal diamond nanopillars based on observation of unrecovered deformation inside scanning electron microscope. The plastic deformation was suggested to be mediated by a phase transition from sp3 carbon to an O8-carbon phase by molecular dynamics simulations. By comparison, our in-situ transmission electron microscopy study reveals that the room-temperature plasticity can be carried out by dislocation slip in both <100> and <111>-oriented diamond nanopillars. The brittle-to-ductile transition is highly dependent on the stress state. We note that the surface structure may play a significant role in the deformation mechanisms as the incipient plasticity always occurs from the surface region in nanoscale diamonds.
Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density $1/f^2$ at high frequencies $f$. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternate at irregular times with high population of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.
The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal (PFC) model. In the model, dislocations are naturally created, without any textit{ad hoc} creation rules, by applying a shearing force to the perf ectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions.
Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-rang e interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.
Efficient and precise prediction of plasticity by data-driven models relies on appropriate data preparation and a well-designed model. Here we introduce an unsupervised machine learning-based data preparation method to maximize the trainability of cr ystal orientation evolution data during deformation. For Taylor model crystal plasticity data, the preconditioning procedure improves the test score of an artificial neural network from 0.831 to 0.999, while decreasing the training iterations by an order of magnitude. The efficacy of the approach was further improved with a recurrent neural network. Electron backscattered (EBSD) lab measurements of crystal rotation during rolling were compared with the results of the surrogate model, and despite error introduced by Taylor model simplifying assumptions, very reasonable agreement between the surrogate model and experiment was observed. Our method is foundational for further data-driven studies, enabling the efficient and precise prediction of texture evolution from experimental and simulated crystal plasticity results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا