ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional crystals of classical particles are very peculiar in that melting may occur in two steps, in a continuous fashion, via an intermediate hexatic fluid phase exhibiting quasi-long-range orientational order. On the other hand, three-dimen sional spheres repelling each other through a fast-decaying bounded potential of generalized-exponential shape (GEM4 potential) can undergo freezing into cluster crystals, allowing for more that one particle per lattice site. We hereby study the combined effect of low spatial dimensionality and extreme potential softness, by investigating the phase behavior of the two-dimensional (2D) GEM4 system. Using a combination of density-functional theory and numerical free-energy calculations, we show that the 2D GEM4 system displays one ordinary and several cluster triangular-crystal phases, and that only the ordinary crystal first melts into a hexatic phase. Upon heating, the difference between the various cluster crystals fades away, eventually leaving a single undifferentiated cluster phase with a pressure-modulated site occupancy.
We present evidence that the concurrent existence of two populations of particles with different effective diameters is not a prerequisite for the occurrence of anomalous phase behaviors in systems of particles interacting through spherically-symmetr ic unbounded potentials. Our results show that an extremely weak softening of the interparticle repulsion, yielding a single nearest-neighbor separation, is able to originate a wide spectrum of unconventional features including reentrant melting, solid polymorphism, as well as thermodynamic, dynamic, and structural anomalies. These findings extend the possibility of anomalous phase behavior to a class of systems much broader than currently assumed.
165 - Franz Saija , Santi Prestipino , 2009
We study the phase behavior of a classical system of particles interacting through a strictly convex soft-repulsive potential which, at variance with the pairwise softened repulsions considered so far in the literature, lacks a region of downward or zero curvature. Nonetheless, such interaction is characterized by two length scales, owing to the presence of a range of interparticle distances where the repulsive force increases, for decreasing distance, much more slowly than in the adjacent regions. We investigate, using extensive Monte Carlo simulations combined with accurate free-energy calculations, the phase diagram of the system under consideration. We find that the model exhibits a fluid-solid coexistence line with multiple re-entrant regions, an extremely rich solid polymorphism with solid-solid transitions, and water-like anomalies. In spite of the isotropic nature of the interparticle potential, we find that, among the crystal structures in which the system can exist, there are also a number of non-Bravais lattices, such as cI16 and diamond.
We investigate the phase behaviour of a system of particles interacting through the exp-6 pair potential, a model interaction that is appropriate to describe effective interatomic forces under high compression. The soft-repulsive component of the pot ential is being varied so as to study the effect on reentrant melting and density anomaly. Upon increasing the repulsion softness, we find that the anomalous melting features persist and occur at smaller pressures. Moreover, if we reduce the range of downward concavity in the potential by extending the hard core at the expenses of the soft-repulsive shoulder, the reentrant part of the melting line reduces in extent so as it does the region of density anomaly.
We study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system through a careful zero-temperature scrutiny of as many as e leven candidate crystal structures, we determine the melting temperature for various pressure values, also with the help of exact free energy calculations. Among the prominent features of this model are pressure-driven reentrant melting and the stabilization of a columnar phase for intermediate temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا