ﻻ يوجد ملخص باللغة العربية
We present evidence that the concurrent existence of two populations of particles with different effective diameters is not a prerequisite for the occurrence of anomalous phase behaviors in systems of particles interacting through spherically-symmetric unbounded potentials. Our results show that an extremely weak softening of the interparticle repulsion, yielding a single nearest-neighbor separation, is able to originate a wide spectrum of unconventional features including reentrant melting, solid polymorphism, as well as thermodynamic, dynamic, and structural anomalies. These findings extend the possibility of anomalous phase behavior to a class of systems much broader than currently assumed.
We study the phase behavior of a classical system of particles interacting through a strictly convex soft-repulsive potential which, at variance with the pairwise softened repulsions considered so far in the literature, lacks a region of downward or
A necessary condition for the validity of the linear viscoelastic model for a (passive) polymeric cylinder with an ultrasonic hysteresis-type absorption submerged in a non-viscous fluid requires that the absorption efficiency is positive (Qabs > 0) s
The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly
We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distanc
A first principle prediction of the binary nanoparticle phase diagram assembled by solvent evaporation has eluded theoretical approaches. In this paper, we show that a binary system interacting through Lennard-Jones (LJ) potential contains all experi