ﻻ يوجد ملخص باللغة العربية
Two-dimensional crystals of classical particles are very peculiar in that melting may occur in two steps, in a continuous fashion, via an intermediate hexatic fluid phase exhibiting quasi-long-range orientational order. On the other hand, three-dimensional spheres repelling each other through a fast-decaying bounded potential of generalized-exponential shape (GEM4 potential) can undergo freezing into cluster crystals, allowing for more that one particle per lattice site. We hereby study the combined effect of low spatial dimensionality and extreme potential softness, by investigating the phase behavior of the two-dimensional (2D) GEM4 system. Using a combination of density-functional theory and numerical free-energy calculations, we show that the 2D GEM4 system displays one ordinary and several cluster triangular-crystal phases, and that only the ordinary crystal first melts into a hexatic phase. Upon heating, the difference between the various cluster crystals fades away, eventually leaving a single undifferentiated cluster phase with a pressure-modulated site occupancy.
We present a Monte Carlo simulation study of the phase behavior of two-dimensional classical particles repelling each other through an isotropic Gaussian potential. As in the analogous three-dimensional case, a reentrant-melting transition occurs upo
We investigate the two-dimensional melting of biological tissues that are modeled by deformable polymeric particles with multi-body interactions described by the Voronoi model. We identify the existence of the intermediate hexatic phase in this syste
We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase
The zero-temperature phase diagram of binary mixtures of particles interacting via a screened Coulomb pair potential is calculated as a function of composition and charge ratio. The potential energy obtained by a Lekner summation is minimized among a
We study in this work the dynamics of a collection of identical hollow spheres (ping-pong balls) that rest on a horizontal metallic grid. Fluidization is achieved by means of a turbulent air current coming from below. The upflow is adjusted so that t