ﻻ يوجد ملخص باللغة العربية
We study the phase behavior of a classical system of particles interacting through a strictly convex soft-repulsive potential which, at variance with the pairwise softened repulsions considered so far in the literature, lacks a region of downward or zero curvature. Nonetheless, such interaction is characterized by two length scales, owing to the presence of a range of interparticle distances where the repulsive force increases, for decreasing distance, much more slowly than in the adjacent regions. We investigate, using extensive Monte Carlo simulations combined with accurate free-energy calculations, the phase diagram of the system under consideration. We find that the model exhibits a fluid-solid coexistence line with multiple re-entrant regions, an extremely rich solid polymorphism with solid-solid transitions, and water-like anomalies. In spite of the isotropic nature of the interparticle potential, we find that, among the crystal structures in which the system can exist, there are also a number of non-Bravais lattices, such as cI16 and diamond.
We present evidence that the concurrent existence of two populations of particles with different effective diameters is not a prerequisite for the occurrence of anomalous phase behaviors in systems of particles interacting through spherically-symmetr
The electrostatic potential profile of a spherical soft particle is derived by solving the Poisson-Boltzmann equations on a spherical system both numerically and analytically. The soft particle is assumed to consist of an ion-permeable charged outer
We show that a system of particles interacting through the exp-6 pair potential, commonly used to describe effective interatomic forces under high compression, exhibits anomalous melting features such as reentrant melting and a rich solid polymorphis
When systems that can undergo phase separation between two coexisting phases in the bulk are confined in thin film geometry between parallel walls, the phase behavior can be profoundly modified. These phenomena shall be described and exemplified by c
Synperonic F-108 (generic name, pluronic) is a micelle forming triblock copolymer of type ABA, where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO). At high temperatures, the hydrophobicity of the PPO chains increase, and the pluron