ﻻ يوجد ملخص باللغة العربية
We investigate the phase behaviour of a system of particles interacting through the exp-6 pair potential, a model interaction that is appropriate to describe effective interatomic forces under high compression. The soft-repulsive component of the potential is being varied so as to study the effect on reentrant melting and density anomaly. Upon increasing the repulsion softness, we find that the anomalous melting features persist and occur at smaller pressures. Moreover, if we reduce the range of downward concavity in the potential by extending the hard core at the expenses of the soft-repulsive shoulder, the reentrant part of the melting line reduces in extent so as it does the region of density anomaly.
Isotropic pair potentials that are bounded at the origin have been proposed from time to time as models of the effective interaction between macromolecules of interest in the chemical physics of soft matter. We present a thorough study of the phase b
This paper continues the investigation of the exponentially repulsive EXP pair-potential system of Paper I with a focus on isomorphs in the low-temperature gas and liquid phases. As expected from the EXP systems strong virial potential-energy correla
The exponentially repulsive EXP pair potential defines a system of particles in terms of which simple liquids quasiuniversality may be explained [A. K. Bacher et al., Nat. Commun. 5, 5424 (2014); J. C. Dyre, J. Phys. Condens. Matter 28, 323001 (2016)
Within the shoving model of the glass transition, the relaxation time and the viscosity are related to the local cage rigidity. This approach can be extended down to the atomic-level in terms of the interatomic interaction, or potential of mean-force
We investigate the behavior of hydrated sulfonated polysulfones over a range of ion contents through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and molecular dynamics (MD) simulations. Experimental eviden