ترغب بنشر مسار تعليمي؟ اضغط هنا

The quasiparticle band-gap renormalization induced by the doped carriers is an important and well-known feature in two-dimensional semiconductors, including transition-metal dichalcogenides (TMDs), and it is of both theoretical and practical interest . To get a quantitative understanding of this effect, here we calculate the quasiparticle band-gap renormalization of the electron-doped monolayer MoS$_2$, a prototypical member of TMDs. The many-body electron-electron interaction induced renormalization of the self-energy is found within the random phase approximation and to account for the quasi-2D character of the Coulomb interaction in this system a Keldysh-type interaction with a nonlocal dielectric constant is used. Considering the renormalization of both the valence and the conduction bands, our calculations reveal a large and nonlinear band-gap renormalization upon adding free carriers to the conduction band. We find a 410 meV reduction of the band gap for the monolayer MoS$_2$ on SiO$_2$ substrate at the free carrier density $n=4.9times 10^{12} rm{cm^{-2}}$ which is in excellent agreement with available experimental results. We also discuss the role of exchange and correlation parts of the self-energy on the overall band-gap renormalization of the system. The strong dependence of the band-gap renormalization on the surrounding dielectric environment is also demonstrated in this work, and a much larger shrinkage of the band gap is predicted for the freestanding monolayer MoS$_2$.
We examine the static non-linear optical response of monolayer transition metal dichalcogenides. Whereas the shift current is suppressed, we identify a strong, valley-dependent non-reciprocal response, which we term a textit{unidirectional valley-con trasting photo-current} (UVCP). It originates from Kramers symmetry breaking by trigonal warping, and its direction is set by the wave vector connecting the two valleys. The UVCP is proportional to the mobility and is enhanced by the excitonic Coulomb interaction and inter-valley scattering, enabling monitoring of inter-valley transitions. We discuss detection strategies in state-of-the-art experiments.
Quantum geometry of the electron wave function plays a significant role in the linear and non-linear responses of crystalline materials. Here, we study quantum geometry induced second harmonic generation. We identify non-linear responses stemming fro m the quantum geometric tensor and the quantum geometric connection in systems with finite Fermi surfaces and disorder. In addition to the injection, shift, and anomalous currents we find two new contributions, which we term double resonant and higher-order pole contributions. Our findings can be tested in state-of-the-art devices in WTe2 (time-reversal symmetric system) and in CuMnAs (parity-time reversal symmetric systems).
In a blueprint for topological quantum electronics, edge state transport in a topological insulator material can be controlled by employing a gate-induced topological quantum phase transition. While finite-size effects have been widely studied in 2D- Xenes, less attention has been devoted to finite-size effects on the gate-induced topological switching in spin-orbit coupled 2D-Xene nanoribbons. Here, by studying width dependence of electronic properties via a tight binding model, we demonstrate that finite-size effects can be used to optimize both the spin-orbit interaction induced barrier in the bulk and the gate-controlled quantized conductance on the edges of zigzag-Xene nanoribbons. The critical electric field required for switching between gapless and gapped edge states reduces as the width decreases, without any fundamental lower bound. This size dependence of the threshold voltage stems from a unique feature of zigzag-Xene nanoribbons: width and momentum dependent tunability of the gate-induced coupling between overlapping spin-filtered chiral states on the two edges. Furthermore, when the width of zigzag-Xene nanoribbons is smaller than a critical limit, topological switching between edge states can be attained without bulk band gap closing and reopening. This is primarily due to the quantum confinement effect on the bulk band spectrum which increases nontrivial bulk band gap with decrease in width. Such reduction in threshold voltage accompanied by enhancement in bulk band gap overturns the conventional wisdom of utilizing wide channel and narrow gap semiconductors for reducing threshold voltage in standard field effect transistor analysis and paves the way towards next-generation low-voltage topological quantum devices.
An exotic anomalous plasmon mode is found in strained Weyl semimetals utilizing the topological Landau Fermi liquid and chiral kinetic theories, in which quasiparticle interactions are modeled by long-range Coulomb and residual short-range interactio ns. The gapped collective mode is derived from the dynamical charge pumping between the bulk and the surface and behaves like $k_{rm F}^{-1}$. The charge oscillations are accurately determined by the coupling between the induced electric field and the background pseudofields. This novel mode unidirectionally disperses along the pseudomagnetic field and manifests itself in an unusual thermal conductivity in apparent violation of the Wiedemann-Franz law. The excitation can be achieved experimentally by mechanical vibrations of the crystal lattice in the THz regime.
We review theoretical and experimental highlights in transport in two-dimensional materials focussing on key developments over the last five years. Topological insulators are finding applications in magnetic devices, while Hall transport in doped sam ples and the general issue of topological protection remain controversial. In transition metal dichalcogenides valley-dependent electrical and optical phenomena continue to stimulate state-of-the-art experiments. In Weyl semimetals the properties of Fermi arcs are being actively investigated. A new field, expected to grow in the near future, focuses on the non-linear electrical and optical responses of topological materials, where fundamental questions are once more being asked about the intertwining roles of the Berry curvature and disorder scattering. In topological superconductors the quest for chiral superconductivity, Majorana fermions and topological quantum computing is continuing apace.
A two-dimensional topological insulator (2DTI) has an insulating bulk and helical spin-polarised edge modes robust to backscattering by non-magnetic disorder. While ballistic transport has been demonstrated in 2DTIs over short distances, larger sampl es show significant backscattering and a nearly temperature-independent resistance whose origin is unclear. 2DTI edges have shown a spin polarisation, however the degree of helicity is difficult to quantify from spin measurements. Here, we study 2DTI few-layer Na3Bi on insulating Al2O3. A non-local conductance measurement geometry enables sensitive detection of the edge conductance in the topological regime, with an edge mean free path ~100 nm. Magnetic field suppresses spin-flip scattering in the helical edges, resulting in a giant negative magnetoresistance (GNMR), up to 80% at 0.9 T. Comparison to theory indicates >98% of scattering is helical spin scattering significantly exceeding the maximum (67%) expected for a non-helical metal. GNMR, coupled with non-local measurements demonstrating edge conduction, thus provides an unambiguous experimental signature of helical edges that we expect to be generically useful in understanding 2DTIs.
Topological semimetals have been at the forefront of experimental and theoretical attention in condensed matter physics. Among these, recently discovered Weyl semimetals have a dispersion described by a three-dimensional Dirac cone, which is at the r oot of exotic physics such as the chiral anomaly in magnetotransport. In a time reversal symmetric (TRS) Weyl semimetal film, the confinement gap gives the quasiparticles a mass, while TRS is preserved by having an even number of valleys with opposite masses. The film can be tuned through a topological phase transition by a gate electric field. In this work, we present a theoretical study of the quantum corrections to the conductivity of a topological semimetal thin film, which is governed by the complex interplay of the chiral band structure, mass term, and scalar and spin-orbit scattering. We study scalar and spin-orbit scattering mechanisms on the same footing, demonstrating that they have a strong qualitative and quantitative impact on the conductivity correction. We show that, due to the spin structure of the matrix Greens functions, terms linear in the extrinsic spin-orbit scattering are present in the Bloch and momentum relaxation times, whereas previous works had identified corrections starting from the second order. In the limit of small quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to a potentially observable density dependence in the weak antilocalization correction. Moreover, when the mass term is around 30 percent of the linear Dirac terms, the system is in the unitary symmetry class with zero quantum correction and switching the extrinsic spin-orbit scattering drives the system to the weak antilocalization. We discuss the crossover between the weak localization and weak antilocalization regimes in terms of the singlet and triplet Cooperon channels, tuning the spin-orbit scattering strength.
Dirac fermions are actively investigated, and the discovery of the quantized anomalous Hall effect of massive Dirac fermions has spurred the promise of low-energy electronics. Some materials hosting Dirac fermions are natural platforms for interlayer coherence effects such as Coulomb drag and exciton condensation. Here we determine the role played by the anomalous Hall effect in Coulomb drag in massive Dirac fermion systems. We focus on topological insulator films with out-of plane magnetizations in both the active and passive layers. The transverse response of the active layer is dominated by a topological term arising from the Berry curvature. We show that the topological mechanism does not contribute to Coulomb drag, yet the longitudinal drag force in the passive layer gives rise to a transverse drag current. This anomalous Hall drag current is independent of the active-layer magnetization, a fact that can be verified experimentally. It depends non-monotonically on the passive-layer magnetization, exhibiting a peak that becomes more pronounced at low densities. These findings should stimulate new experiments and quantitative studies of anomalous Hall drag.
We devise a platform for noise-resistant quantum computing using the valley degree of freedom of Si quantum dots. The qubit is encoded in two polarized (1,1) spin-triplet states with different valley compositions in a double quantum dot, with a Zeema n field enabling unambiguous initialization. A top gate gives a difference in the valley splitting between the dots, allowing controllable interdot tunneling between opposite valley eigenstates, which enables one-qubit rotations. Two-qubit operations rely on a stripline resonator, and readout on charge sensing. Sensitivity to charge and spin fluctuations is determined by intervalley processes and is greatly reduced as compared to conventional spin and charge qubits. We describe a valley echo for further noise suppression.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا