ﻻ يوجد ملخص باللغة العربية
We examine the static non-linear optical response of monolayer transition metal dichalcogenides. Whereas the shift current is suppressed, we identify a strong, valley-dependent non-reciprocal response, which we term a textit{unidirectional valley-contrasting photo-current} (UVCP). It originates from Kramers symmetry breaking by trigonal warping, and its direction is set by the wave vector connecting the two valleys. The UVCP is proportional to the mobility and is enhanced by the excitonic Coulomb interaction and inter-valley scattering, enabling monitoring of inter-valley transitions. We discuss detection strategies in state-of-the-art experiments.
The direct gap interband transitions in transition metal dichalcogenides monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the $K^+$ or $K^-$ valley in momentum space are induced. L
The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. One promising platform to reach such strong light-mat
We report that the refractive index of transition metal dichacolgenide (TMDC) monolayers, such as MoS2, WS2, and WSe2, can be substantially tuned by > 60% in the imaginary part and > 20% in the real part around exciton resonances using CMOS-compatibl
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction
We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenides monolayers. We show that momentum and spin relaxation times due to the exchange interaction by magnetic impurities, are m