ترغب بنشر مسار تعليمي؟ اضغط هنا

Valley-based noise-resistant quantum computation using Si quantum dots

135   0   0.0 ( 0 )
 نشر من قبل Dimitrie Culcer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We devise a platform for noise-resistant quantum computing using the valley degree of freedom of Si quantum dots. The qubit is encoded in two polarized (1,1) spin-triplet states with different valley compositions in a double quantum dot, with a Zeeman field enabling unambiguous initialization. A top gate gives a difference in the valley splitting between the dots, allowing controllable interdot tunneling between opposite valley eigenstates, which enables one-qubit rotations. Two-qubit operations rely on a stripline resonator, and readout on charge sensing. Sensitivity to charge and spin fluctuations is determined by intervalley processes and is greatly reduced as compared to conventional spin and charge qubits. We describe a valley echo for further noise suppression.



قيم البحث

اقرأ أيضاً

We examine energy spectra of Si quantum dots embedded into Si_{0.75}Ge_{0.25} buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley spli tting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses <6 nm valley splitting is found to be >150 ueV. Using the unique advantage of atomistic calculations we analyze the effect of buffer disorder on valley splitting. Disorder in the buffer leads to the suppression of valley splitting by a factor of 2.5, the splitting fluctuates with ~20 ueV for different disorder realizations. Through these simulations we can guide future experiments into regions of low device-to-device fluctuations.
The valley-orbit coupling in a few-electron Si quantum dot is expected to be a function of its occupation number N. We study the spectrum of multivalley Si quantum dots for 2 <= N <= 4, showing that, counterintuitively, electron-electron interaction effects on the valley-orbit coupling are negligible. For N=2 they are suppressed by valley interference, for N=3 they vanish due to spinor overlaps, and for N = 4 they cancel between different pairs of electrons. To corroborate our theoretical findings, we examine the experimental energy spectrum of a few-electron metal-oxide-semiconductor quantum dot. The measured spin-valley state filling sequence in a magnetic field reveals that the valley-orbit coupling is definitively unaffected by the occupation number.
Electron spins in silicon have long coherence times and are a promising qubit platform. However, electric field noise in semiconductors poses a challenge for most single- and multi-qubit operations in quantum-dot spin qubits. Here, we investigate the dependence of low-frequency charge noise spectra on temperature and aluminum-oxide gate dielectric thickness in Si/SiGe quantum dots with overlapping gates. We find that charge noise increases with aluminum oxide thickness. We also find strong dot-to-dot variations in the temperature dependence of the noise magnitude and spectrum. These findings suggest that each quantum dot experiences noise caused by a distinct ensemble of two-level systems, each of which has a non-uniform distribution of thermal activation energies. Taken together, our results suggest that charge noise in Si/SiGe quantum dots originates at least in part from a non-uniform distribution of two-level systems near the surface of the semiconductor.
We have demonstrated few-electron quantum dots in Si/SiGe and InGaAs, with occupation number controllable from N = 0. These display a high degree of spatial symmetry and identifiable shell structure. Magnetospectroscopy measurements show that two Si- based devices possess a singlet N =2 ground state at low magnetic field and therefore the two-fold valley degeneracy is lifted. The valley splittings in these two devices were 120 and 270 {mu}eV, suggesting the presence of atomically sharp interfaces in our heterostructures.
Silicon quantum dot qubits must contend with low-lying valley excited states which are sensitive functions of the quantum well heterostructure and disorder; quantifying and maximizing the energies of these states are critical to improving device perf ormance. We describe a spectroscopic method for probing excited states in isolated Si/SiGe double quantum dots using standard baseband pulsing techniques, easing the extraction of energy spectra in multiple-dot devices. We use this method to measure dozens of valley excited state energies spanning multiple wafers, quantum dots, and orbital states, crucial for evaluating the dependence of valley splitting on quantum well width and other epitaxial conditions. Our results suggest that narrower wells can be beneficial for improving valley splittings, but this effect can be confounded by variations in growth and fabrication conditions. These results underscore the importance of valley splitting measurements for guiding the development of Si qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا