ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasiparticle band-gap renormalization in doped monolayer MoS$_2$

96   0   0.0 ( 0 )
 نشر من قبل Azadeh Faridi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quasiparticle band-gap renormalization induced by the doped carriers is an important and well-known feature in two-dimensional semiconductors, including transition-metal dichalcogenides (TMDs), and it is of both theoretical and practical interest. To get a quantitative understanding of this effect, here we calculate the quasiparticle band-gap renormalization of the electron-doped monolayer MoS$_2$, a prototypical member of TMDs. The many-body electron-electron interaction induced renormalization of the self-energy is found within the random phase approximation and to account for the quasi-2D character of the Coulomb interaction in this system a Keldysh-type interaction with a nonlocal dielectric constant is used. Considering the renormalization of both the valence and the conduction bands, our calculations reveal a large and nonlinear band-gap renormalization upon adding free carriers to the conduction band. We find a 410 meV reduction of the band gap for the monolayer MoS$_2$ on SiO$_2$ substrate at the free carrier density $n=4.9times 10^{12} rm{cm^{-2}}$ which is in excellent agreement with available experimental results. We also discuss the role of exchange and correlation parts of the self-energy on the overall band-gap renormalization of the system. The strong dependence of the band-gap renormalization on the surrounding dielectric environment is also demonstrated in this work, and a much larger shrinkage of the band gap is predicted for the freestanding monolayer MoS$_2$.



قيم البحث

اقرأ أيضاً

The dynamics of band-gap renormalization and gain build-up in monolayer MoTe$_2$ is investigated by evaluating the non-equilibrium Dirac-Bloch equations with the incoherent carrier-carrier and carrier-phonon scattering treated via quantum-Boltzmann t ype scattering equations. For the case where an approximately $300$ fs-long high intensity optical pulse generates charge-carrier densities in the gain regime, the strong Coulomb coupling leads to a relaxation of excited carriers on a few fs time scale. The pump-pulse generation of excited carriers induces a large band-gap renormalization during the time scale of the pulse. Efficient phonon coupling leads to a subsequent carrier thermalization within a few ps, which defines the time scale for the optical gain build-up energetically close to the low-density exciton resonance.
Ideal monolayers of common semiconducting transition metal dichalcogenides (TMDCs) such as MoS$_2$, WS$_2$, MoSe$_2$, and WSe$_2$ possess many similar electronic properties. As it is the case for all semiconductors, however, the physical response of these systems is strongly determined by defects in a way specific to each individual compound. Here we investigate the ability of exfoliated monolayers of these TMDCs to support high-quality, well-balanced ambipolar conduction, which has been demonstrated for WS$_2$, MoSe$_2$, and WSe$_2$, but not for MoS$_2$. Using ionic-liquid gated transistors we show that, contrary to WS$_2$, MoSe$_2$, and WSe$_2$, hole transport in exfoliated MoS$_2$ monolayers is systematically anomalous, exhibiting a maximum in conductivity at negative gate voltage (V$_G$) followed by a suppression of up to 100 times upon further increasing V$_G$. To understand the origin of this difference we have performed a series of experiments including the comparison of hole transport in MoS$_2$ monolayers and thicker multilayers, in exfoliated and CVD-grown monolayers, as well as gate-dependent optical measurements (Raman and photoluminescence) and scanning tunneling imaging and spectroscopy. In agreement with existing {it ab-initio} calculations, the results of all these experiments are consistently explained in terms of defects associated to chalcogen vacancies that only in MoS$_2$ monolayers -- but not in thicker MoS$_2$ multilayers nor in monolayers of the other common semiconducting TMDCs -- create in-gap states near the top of the valence band that act as strong hole traps. Our results demonstrate the importance of studying systematically how defects determine the properties of 2D semiconducting materials and of developing methods to control them.
The optical susceptibility is a local, minimally-invasive and spin-selective probe of the ground state of a two-dimensional electron gas. We apply this probe to a gated monolayer of MoS$_2$. We demonstrate that the electrons are spin polarized. Of th e four available bands, only two are occupied. These two bands have the same spin but different valley quantum numbers. We argue that strong Coulomb interactions are a key aspect of this spontaneous symmetry breaking. The Bohr radius is so small that even electrons located far apart in phase space interact, facilitating exchange couplings to align the spins.
Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena - critical to both many- body physics exploration and device applications - presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in 2D semiconductors.
The electronic structure of epitaxial single-layer MoS$_2$ on Au(111) is investigated by angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, and first principles calculations. While the band dispersion of the supported single -layer is close to a free-standing layer in the vicinity of the valence band maximum at $bar{K}$ and the calculated electronic band gap on Au(111) is similar to that calculated for the free-standing layer, significant modifications to the band structure are observed at other points of the two-dimensional Brillouin zone: At $bar{Gamma}$, the valence band maximum has a significantly higher binding energy than in the free MoS$_2$ layer and the expected spin-degeneracy of the uppermost valence band at the $bar{M}$ point cannot be observed. These band structure changes are reproduced by the calculations and can be explained by the detailed interaction of the out-of-plane MoS$_2$ orbitals with the substrate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا