ترغب بنشر مسار تعليمي؟ اضغط هنا

98 - Shuchen Guo , Dejun Luo 2021
We consider moderately interacting particle systems with singular interaction kernel and environmental noise. It is shown that the mollified empirical measures converge in strong norms to the unique (local) solutions of nonlinear Fokker-Planck equati ons. The approach works for the Biot-Savart and Poisson kernels.
164 - Dejun Luo 2021
We consider the problem of regularization by noise for the three dimensional magnetohydrodynamical (3D MHD) equations. It is shown that, in a suitable scaling limit, multiplicative noise of transport type gives rise to bounds on the vorticity fields of the fluid velocity and magnetic fields. As a result, if the noise intensity is big enough, then the stochastic 3D MHD equations admit a pathwise unique global solution for large initial data, with high probability.
We consider on the torus the scaling limit of stochastic 2D (inviscid) fluid dynamical equations with transport noise to deterministic viscous equations. Quantitative estimates on the convergence rates are provided by combining analytic and probabili stic arguments, especially heat kernel properties and maximal estimates for stochastic convolutions. Similar ideas are applied to the stochastic 2D Keller-Segel model, yielding explicit choice of noise to ensure that the blow-up probability is less than any given threshold. Our approach also gives rise to some mixing property for stochastic linear transport equations and dissipation enhancement in the viscous case.
We prove the existence of an eddy heat diffusion coefficient coming from an idealized model of turbulent fluid. A difficulty lies in the presence of a boundary, with also turbulent mixing and the eddy diffusion coefficient going to zero at the boundary. Nevertheless enhanced diffusion takes place.
We consider point vortex systems on the two dimensional torus perturbed by environmental noise. It is shown that, under a suitable scaling of the noises, weak limit points of the empirical measures are solutions to the vorticity formulation of deterministic 2D Navier-Stokes equations.
For some deterministic nonlinear PDEs on the torus whose solutions may blow up in finite time, we show that, under suitable conditions on the nonlinear term, the blow-up is delayed by multiplicative noise of transport type in a certain scaling limit. The main result is applied to the 3D Keller-Segel, 3D Fisher-KPP and 2D Kuramoto-Sivashinsky equations, yielding long-time existence for large initial data with high probability.
120 - Dejun Luo 2020
The inviscid 2D Boussinesq system with thermal diffusivity and multiplicative noise of transport type is studied in the $L^2$-setting. It is shown that, under a suitable scaling of the noise, weak solutions to the stochastic 2D Boussinesq equations c onverge weakly to the unique solution of the deterministic viscous Boussinesq system. Consequently, the transport noise asymptotically regularizes the inviscid 2D Boussinesq system and enhances dissipation in the limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا