ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous system

121   0   0.0 ( 0 )
 نشر من قبل Dejun Luo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Dejun Luo




اسأل ChatGPT حول البحث

The inviscid 2D Boussinesq system with thermal diffusivity and multiplicative noise of transport type is studied in the $L^2$-setting. It is shown that, under a suitable scaling of the noise, weak solutions to the stochastic 2D Boussinesq equations converge weakly to the unique solution of the deterministic viscous Boussinesq system. Consequently, the transport noise asymptotically regularizes the inviscid 2D Boussinesq system and enhances dissipation in the limit.



قيم البحث

اقرأ أيضاً

63 - Lucio Galeati 2019
A stochastic transport linear equation (STLE) with multiplicative space-time dependent noise is studied. It is shown that, under suitable assumptions on the noise, a multiplicative renormalization leads to convergence of the solutions of STLE to the solution of a deterministic parabolic equation. Existence and uniqueness for STLE are also discussed. Our method works in dimension $dgeq 2$; the case $d=1$ is also investigated but no conclusive answer is obtained.
We consider point vortex systems on the two dimensional torus perturbed by environmental noise. It is shown that, under a suitable scaling of the noises, weak limit points of the empirical measures are solutions to the vorticity formulation of deterministic 2D Navier-Stokes equations.
This paper is based on a formulation of the Navier-Stokes equations developed by P. Constantin and the first author (texttt{arxiv:math.PR/0511067}, to appear), where the velocity field of a viscous incompressible fluid is written as the expected valu e of a stochastic process. In this paper, we take $N$ copies of the above process (each based on independent Wiener processes), and replace the expected value with $frac{1}{N}$ times the sum over these $N$ copies. (We remark that our formulation requires one to keep track of $N$ stochastic flows of diffeomorphisms, and not just the motion of $N$ particles.) We prove that in two dimensions, this system of interacting diffeomorphisms has (time) global solutions with initial data in the space $holderspace{1}{alpha}$ which consists of differentiable functions whose first derivative is $alpha$ Holder continuous (see Section ref{sGexist} for the precise definition). Further, we show that as $N to infty$ the system converges to the solution of Navier-Stokes equations on any finite interval $[0,T]$. However for fixed $N$, we prove that this system retains roughly $O(frac{1}{N})$ times its original energy as $t to infty$. Hence the limit $N to infty$ and $Tto infty$ do not commute. For general flows, we only provide a lower bound to this effect. In the special case of shear flows, we compute the behaviour as $t to infty$ explicitly.
131 - Sebastian Hensel 2020
We establish finite time extinction with probability one for weak solutions of the Cauchy-Dirichlet problem for the 1D stochastic porous medium equation with Stratonovich transport noise and compactly supported smooth initial datum. Heuristically, th is is expected to hold because Brownian motion has average spread rate $O(t^frac{1}{2})$ whereas the support of solutions to the deterministic PME grows only with rate $O(t^{frac{1}{m{+}1}})$. The rigorous proof relies on a contraction principle up to time-dependent shift for Wong-Zakai type approximations, the transformation to a deterministic PME with two copies of a Brownian path as the lateral boundary, and techniques from the theory of viscosity solutions.
We prove absolute continuity of the law of the solution, evaluated at fixed points in time and space, to a parabolic dissipative stochastic PDE on $L^2(G)$, where $G$ is an open bounded domain in $mathbb{R}^d$ with smooth boundary. The equation is dr iven by a multiplicative Wiener noise and the nonlinear drift term is the superposition operator associated to a real function which is assumed to be monotone, locally Lipschitz continuous, and growing not faster than a polynomial. The proof, which uses arguments of the Malliavin calculus, crucially relies on the well-posedness theory in the mild sense for stochastic evolution equations in Banach spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا