ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative convergence rates for scaling limit of SPDEs with transport noise

153   0   0.0 ( 0 )
 نشر من قبل Dejun Luo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider on the torus the scaling limit of stochastic 2D (inviscid) fluid dynamical equations with transport noise to deterministic viscous equations. Quantitative estimates on the convergence rates are provided by combining analytic and probabilistic arguments, especially heat kernel properties and maximal estimates for stochastic convolutions. Similar ideas are applied to the stochastic 2D Keller-Segel model, yielding explicit choice of noise to ensure that the blow-up probability is less than any given threshold. Our approach also gives rise to some mixing property for stochastic linear transport equations and dissipation enhancement in the viscous case.



قيم البحث

اقرأ أيضاً

121 - Yi Ge , Xiaobin Sun , Yingchao Xie 2021
In this paper, we study a class of slow-fast stochastic partial differential equations with multiplicative Wiener noise. Under some appropriate conditions, we prove the slow component converges to the solution of the corresponding averaged equation w ith optimal orders 1/2 and 1 in the strong and weak sense respectively. The main technique is based on the Poisson equation.
130 - Daniel Conus , Arnulf Jentzen , 2014
Strong convergence rates for (temporal, spatial, and noise) numerical approximations of semilinear stochastic evolution equations (SEEs) with smooth and regular nonlinearities are well understood in the scientific literature. Weak convergence rates f or numerical approximations of such SEEs have been investigated since about 11 years and are far away from being well understood: roughly speaking, no essentially sharp weak convergence rates are known for parabolic SEEs with nonlinear diffusion coefficient functions; see Remark 2.3 in [A. Debussche, Weak approximation of stochastic partial differential equations: the nonlinear case, Math. Comp. 80 (2011), no. 273, 89-117] for details. In this article we solve the weak convergence problem emerged from Debussches article in the case of spectral Galerkin approximations and establish essentially sharp weak convergence rates for spatial spectral Galerkin approximations of semilinear SEEs with nonlinear diffusion coefficient functions. Our solution to the weak convergence problem does not use Malliavin calculus. Rather, key ingredients in our solution to the weak convergence problem emerged from Debussches article are the use of appropriately modifie
133 - Wei Hong , Shihu Li , Wei Liu 2021
In this paper, we aim to study the asymptotic behaviour for a class of McKean-Vlasov stochastic partial differential equations with slow and fast time-scales. Using the variational approach and classical Khasminskii time discretization, we show that the slow component strongly converges to the solution of the associated averaged equation. In particular, the corresponding convergence rates are also obtained. The main results can be applied to demonstrate the averaging principle for various McKean-Vlasov nonlinear SPDEs such as stochastic porous media type equation, stochastic $p$-Laplace type equation and also some McKean-Vlasov stochastic differential equations.
We prove existence and uniqueness of strong solutions for a class of semilinear stochastic evolution equations driven by general Hilbert space-valued semimartingales, with drift equal to the sum of a linear maximal monotone operator in variational fo rm and of the superposition operator associated to a random time-dependent monotone function defined on the whole real line. Such a function is only assumed to satisfy a very mild symmetry-like condition, but its rate of growth towards infinity can be arbitrary. Moreover, the noise is of multiplicative type and can be path-dependent. The solution is obtained via a priori estimates on solutions to regularized equations, interpreted both as stochastic equations as well as deterministic equations with random coefficients, and ensuing compactness properties. A key role is played by an infinite-dimensional Doob-type inequality due to Metivier and Pellaumail.
115 - Feng-Yu Wang 2021
The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigenvalues of the underlying linear operator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا