ﻻ يوجد ملخص باللغة العربية
We consider point vortex systems on the two dimensional torus perturbed by environmental noise. It is shown that, under a suitable scaling of the noises, weak limit points of the empirical measures are solutions to the vorticity formulation of deterministic 2D Navier-Stokes equations.
This work establishes the equivalence between Mean Field Game and a class of compressible Navier-Stokes equations for their connections by Hamilton-Jacobi-Bellman equations. The existence of the Nash Equilibrium of the Mean Field Game, and hence the
The inviscid 2D Boussinesq system with thermal diffusivity and multiplicative noise of transport type is studied in the $L^2$-setting. It is shown that, under a suitable scaling of the noise, weak solutions to the stochastic 2D Boussinesq equations c
This paper is based on a formulation of the Navier-Stokes equations developed by P. Constantin and the first author (texttt{arxiv:math.PR/0511067}, to appear), where the velocity field of a viscous incompressible fluid is written as the expected valu
Mathematical mean-field approaches play an important role in different fields of Physics and Chemistry, but have found in recent works also their application in Economics, Finance and Game Theory. The objective of our paper is to investigate a specia
The averaging principle is established for the slow component and the fast component being two dimensional stochastic Navier-Stokes equations and stochastic reaction-diffusion equations, respectively. The classical Khasminskii approach based on time