ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean field limit of point vortices with environmental noises to deterministic 2D Navier-Stokes equations

81   0   0.0 ( 0 )
 نشر من قبل Dejun Luo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider point vortex systems on the two dimensional torus perturbed by environmental noise. It is shown that, under a suitable scaling of the noises, weak limit points of the empirical measures are solutions to the vorticity formulation of deterministic 2D Navier-Stokes equations.



قيم البحث

اقرأ أيضاً

113 - Tao Luo , Qingshuo Song 2021
This work establishes the equivalence between Mean Field Game and a class of compressible Navier-Stokes equations for their connections by Hamilton-Jacobi-Bellman equations. The existence of the Nash Equilibrium of the Mean Field Game, and hence the solvability of Navier-Stokes equations, are provided under a set of conditions.
120 - Dejun Luo 2020
The inviscid 2D Boussinesq system with thermal diffusivity and multiplicative noise of transport type is studied in the $L^2$-setting. It is shown that, under a suitable scaling of the noise, weak solutions to the stochastic 2D Boussinesq equations c onverge weakly to the unique solution of the deterministic viscous Boussinesq system. Consequently, the transport noise asymptotically regularizes the inviscid 2D Boussinesq system and enhances dissipation in the limit.
This paper is based on a formulation of the Navier-Stokes equations developed by P. Constantin and the first author (texttt{arxiv:math.PR/0511067}, to appear), where the velocity field of a viscous incompressible fluid is written as the expected valu e of a stochastic process. In this paper, we take $N$ copies of the above process (each based on independent Wiener processes), and replace the expected value with $frac{1}{N}$ times the sum over these $N$ copies. (We remark that our formulation requires one to keep track of $N$ stochastic flows of diffeomorphisms, and not just the motion of $N$ particles.) We prove that in two dimensions, this system of interacting diffeomorphisms has (time) global solutions with initial data in the space $holderspace{1}{alpha}$ which consists of differentiable functions whose first derivative is $alpha$ Holder continuous (see Section ref{sGexist} for the precise definition). Further, we show that as $N to infty$ the system converges to the solution of Navier-Stokes equations on any finite interval $[0,T]$. However for fixed $N$, we prove that this system retains roughly $O(frac{1}{N})$ times its original energy as $t to infty$. Hence the limit $N to infty$ and $Tto infty$ do not commute. For general flows, we only provide a lower bound to this effect. In the special case of shear flows, we compute the behaviour as $t to infty$ explicitly.
Mathematical mean-field approaches play an important role in different fields of Physics and Chemistry, but have found in recent works also their application in Economics, Finance and Game Theory. The objective of our paper is to investigate a specia l mean-field problem in a purely stochastic approach: for the solution $(Y,Z)$ of a mean-field backward stochastic differential equation driven by a forward stochastic differential of McKean--Vlasov type with solution $X$ we study a special approximation by the solution $(X^N,Y^N,Z^N)$ of some decoupled forward--backward equation which coefficients are governed by $N$ independent copies of $(X^N,Y^N,Z^N)$. We show that the convergence speed of this approximation is of order $1/sqrt{N}$. Moreover, our special choice of the approximation allows to characterize the limit behavior of $sqrt{N}(X^N-X,Y^N-Y,Z^N-Z)$. We prove that this triplet converges in law to the solution of some forward--backward stochastic differential equation of mean-field type, which is not only governed by a Brownian motion but also by an independent Gaussian field.
The averaging principle is established for the slow component and the fast component being two dimensional stochastic Navier-Stokes equations and stochastic reaction-diffusion equations, respectively. The classical Khasminskii approach based on time discretization is used for the proof of the slow component strong convergence to the solution of the corresponding averaged equation under some suitable conditions. Meanwhile, some powerful techniques are used to overcome the difficulties caused by the nonlinear term and to release the regularity of the initial value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا