ﻻ يوجد ملخص باللغة العربية
We consider the problem of regularization by noise for the three dimensional magnetohydrodynamical (3D MHD) equations. It is shown that, in a suitable scaling limit, multiplicative noise of transport type gives rise to bounds on the vorticity fields of the fluid velocity and magnetic fields. As a result, if the noise intensity is big enough, then the stochastic 3D MHD equations admit a pathwise unique global solution for large initial data, with high probability.
In this article, we study the stability of solutions to 3D stochastic primitive equations driven by fractional noise. Since the fractional Brownian motion is essentially different from Brownian motion, lots of stochastic analysis tools are not availa
We study ODEs with vector fields given by general Schwartz distributions, and we show that if we perturb such an equation by adding an infinitely regularizing path, then it has a unique solution and it induces an infinitely smooth flow of diffeomorph
For some deterministic nonlinear PDEs on the torus whose solutions may blow up in finite time, we show that, under suitable conditions on the nonlinear term, the blow-up is delayed by multiplicative noise of transport type in a certain scaling limit.
In this paper we solve a selection problem for multidimensional SDE $d X^varepsilon(t)=a(X^varepsilon(t)) d t+varepsilon sigma(X^varepsilon(t)), d W(t)$, where the drift and diffusion are locally Lipschitz continuous outside of a fixed hyperplane
We investigate the regularizing effect of certain additive continuous perturbations on SDEs with multiplicative fractional Brownian motion (fBm). Traditionally, a Lipschitz requirement on the drift and diffusion coefficients is imposed to ensure exis