ترغب بنشر مسار تعليمي؟ اضغط هنا

The many-body physics at quantum phase transitions shows a subtle interplay between quantum and thermal fluctuations, emerging in the low-temperature limit. In this review, we first give a pedagogical introduction to the equilibrium behavior of syste ms in that context, whose scaling framework is essentially developed by exploiting the quantum-to-classical mapping and the renormalization-group theory of critical phenomena at continuous phase transitions. Then we specialize to protocols entailing the out-of-equilibrium quantum dynamics, such as instantaneous quenches and slow passages across quantum transitions. These are mostly discussed within dynamic scaling frameworks, obtained by appropriately extending the equilibrium scaling laws. We review phenomena at first-order quantum transitions as well, whose peculiar scaling behaviors are characterized by an extreme sensitivity to the boundary conditions, giving rise to exponentials or power laws for the same bulk system. In the last part, we cover aspects related to the effects of dissipative interactions with an environment, through suitable generalizations of the dynamic scaling at quantum transitions. The presentation is limited to issues related to, and controlled by, the quantum transition developed by closed many-body systems, treating the dissipation as a perturbation of the critical regimes, as for the temperature at the zero-temperature quantum transition. We focus on the physical conditions giving rise to a nontrivial interplay between critical modes and various dissipative mechanisms, generally realized when the involved mechanism excites only the low-energy modes of the quantum transitions.
We provide a rigorous construction of Markovian master equations for a wide class of quantum systems that encompass quadratic models of finite size, linearly coupled to an environment modeled by a set of independent thermal baths. Our theory can be a pplied for both fermionic and bosonic models in any number of physical dimensions, and does not require any particular spatial symmetry of the global system. We show that, for non-degenerate systems under a full secular approximation, the effective Lindblad operators are the normal modes of the system, with coupling constants that explicitly depend on the transformation matrices that diagonalize the Hamiltonian. Both the dynamics and the steady-state (guaranteed to be unique) properties can be obtained with a polynomial amount of resources in the system size. We also address the particle and energy current flowing through the system in a minimal two-bath scheme and find that they hold the structure of Landauers formula, being thermodynamically consistent.
We investigate the effects of dissipation on the quantum dynamics of many-body systems at quantum transitions, especially considering those of the first order. This issue is studied within the paradigmatic one-dimensional quantum Ising model. We anal yze the out-of-equilibrium dynamics arising from quenches of the Hamiltonian parameters and dissipative mechanisms modeled by a Lindblad master equation, with either local or global spin operators acting as dissipative operators. Analogously to what happens at continuous quantum transitions, we observe a regime where the system develops a nontrivial dynamic scaling behavior, which is realized when the dissipation parameter $u$ (globally controlling the decay rate of the dissipation within the Lindblad framework) scales as the energy difference $Delta$ of the lowest levels of the Hamiltonian, i.e., $usim Delta$. However, unlike continuous quantum transitions where $Delta$ is power-law suppressed, at first-order quantum transitions $Delta$ is exponentially suppressed with increasing the system size (provided the boundary conditions do not favor any particular phase).
We study the out-of-equilibrium dynamics of one-dimensional quantum Ising-like systems, arising from sudden quenches of the Hamiltonian parameter $g$ driving quantum transitions between disordered and ordered phases. In particular, we consider quench es to values of $g$ around the critical value $g_c$, and mainly address the question whether, and how, the quantum transition leaves traces in the evolution of the transverse and longitudinal magnetizations during such a deep out-of-equilibrium dynamics. We shed light on the emergence of singularities in the thermodynamic infinite-size limit, likely related to the integrability of the model. Finite systems in periodic and open boundary conditions develop peculiar power-law finite-size scaling laws related to revival phenomena, but apparently unrelated to the quantum transition, because their main features are generally observed in quenches to generic values of $g$. We also investigate the effects of dissipative interactions with an environment, modeled by a Lindblad equation with local decay and pumping dissipation operators within the quadratic fermionic model obtainable by a Jordan-Wigner mapping. Dissipation tends to suppress the main features of the unitary dynamics of closed systems. We finally address the effects of integrability breaking, due to further lattice interactions, such as in anisotropic next-to-nearest neighbor Ising (ANNNI) models. We show that some qualitative features of the post-quench dynamics persist, in particular the different behaviors when quenching to quantum ferromagnetic and paramagnetic phases, and the revival phenomena due to the finite size of the system.
We study the quantum dynamics of many-body systems, in the presence of dissipation due to the interaction with the environment, under Kibble-Zurek (KZ) protocols in which one Hamiltonian parameter is slowly, and linearly in time, driven across the cr itical value of a zero-temperature quantum transition. In particular we address whether, and under which conditions, open quantum systems can develop a universal dynamic scaling regime similar to that emerging in closed systems. We focus on a class of dissipative mechanisms whose dynamics can be reliably described through a Lindblad master equation governing the time evolution of the systems density matrix. We argue that a dynamic scaling limit exists even in the presence of dissipation, whose main features are controlled by the universality class of the quantum transition. This requires a particular tuning of the dissipative interactions, whose decay rate $u$ should scale as $usim t_s^{-kappa}$ with increasing the time scale $t_s$ of the KZ protocol, where the exponent $kappa = z/(y_mu+z)$ depends on the dynamic exponent $z$ and the renormalization-group dimension $y_mu$ of the driving Hamiltonian parameter. Our dynamic scaling arguments are supported by numerical results for KZ protocols applied to a one-dimensional fermionic wire undergoing a quantum transition in the same universality class of the quantum Ising chain, in the presence of dissipative mechanisms which include local pumping, decay, and dephasing.
We consider a dynamic protocol for quantum many-body systems, which enables to study the interplay between unitary Hamiltonian driving and random local projective measurements. While the unitary dynamics tends to increase entanglement, local measurem ents tend to disentangle, thus favoring decoherence. Close to a quantum transition where the system develops critical correlations with diverging length scales, the competition of the two drivings is analyzed within a dynamic scaling framework, allowing us to identify a regime (dynamic scaling limit) where the two mechanisms develop a nontrivial interplay. We perform a numerical analysis of this protocol in a measurement-driven Ising chain, which supports the scaling laws we put forward. The local measurement process generally tends to suppress quantum correlations, even in the dynamic scaling limit. The power law of the decay of the quantum correlations turns out to be enhanced at the quantum transition.
Collective behavior strongly influences the charging dynamics of quantum batteries (QBs). Here, we study the impact of nonlocal correlations on the energy stored in a system of $N$ QBs. A unitary charging protocol based on a Sachdev-Ye-Kitaev (SYK) q uench Hamiltonian is thus introduced and analyzed. SYK models describe strongly interacting systems with nonlocal correlations and fast thermalization properties. Here, we demonstrate that, once charged, the average energy stored in the QB is very stable, realizing an ultraprecise charging protocol. By studying fluctuations of the average energy stored, we show that temporal fluctuations are strongly suppressed by the presence of nonlocal correlations at all time scales. A comparison with other paradigmatic examples of many-body QBs shows that this is linked to the collective dynamics of the SYK model and its high level of entanglement. We argue that such feature relies on the fast scrambling property of the SYK Hamiltonian, and on its fast thermalization properties, promoting this as an ideal model for the ultimate temporal stability of a generic QB. Finally, we show that the temporal evolution of the ergotropy, a quantity that characterizes the amount of extractable work from a QB, can be a useful probe to infer the thermalization properties of a many-body quantum system.
The exactly-solvable Sachdev-Ye-Kitaev (SYK) model has recently received considerable attention in both condensed matter and high energy physics because it describes quantum matter without quasiparticles, while being at the same time the holographic dual of a quantum black hole. In this Letter, we examine SYK-based charging protocols of quantum batteries with N quantum cells. Extensive numerical calculations based on exact diagonalization for N up to 16 strongly suggest that the optimal charging power of our SYK quantum batteries displays a super-extensive scaling with N that stems from genuine quantum mechanical effects. While the complexity of the nonequilibrium SYK problem involved in the charging dynamics prevents us from an analytical proof, we believe that this Letter offers the first (to the best of our knowledge) strong numerical evidence of a quantum advantage occurring due to the maximally-entangling underlying quantum dynamics.
We study the critical behavior of the nonequilibrium dynamics and of the steady states emerging from the competition between coherent and dissipative dynamics close to quantum phase transitions. The latter is induced by the coupling of the system wit h a Markovian bath, such that the evolution of the systems density matrix can be effectively described by a Lindblad master equation. We devise general scaling behaviors for the out-of-equilibrium evolution and the stationary states emerging in the large-time limit for generic initial conditions, in terms of the parameters of the Hamiltonian providing the coherent driving and those associated with the dissipative interactions with the environment. Our framework is supported by numerical results for the dynamics of a one-dimensional lattice fermion gas undergoing a quantum Ising transition, in the presence of dissipative mechanisms which include local pumping and decay of particles.
The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow in a quantum battery described by a disordered quantum Ising chain Hamiltonian, whose equilibrium phase diagram presents many-body localized (MBL), Anderson localized (AL), and ergodic phases. We demonstrate that i) the low amount of entanglement of the MBL phase guarantees much better work extraction capabilities than the ergodic phase and ii) interactions suppress temporal energy fluctuations in comparison with those of the non-interacting AL phase. Finally, we show that the statistical distribution of values of the optimal charging time is a clear-cut diagnostic tool of the MBL phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا