ﻻ يوجد ملخص باللغة العربية
We study the quantum dynamics of many-body systems, in the presence of dissipation due to the interaction with the environment, under Kibble-Zurek (KZ) protocols in which one Hamiltonian parameter is slowly, and linearly in time, driven across the critical value of a zero-temperature quantum transition. In particular we address whether, and under which conditions, open quantum systems can develop a universal dynamic scaling regime similar to that emerging in closed systems. We focus on a class of dissipative mechanisms whose dynamics can be reliably described through a Lindblad master equation governing the time evolution of the systems density matrix. We argue that a dynamic scaling limit exists even in the presence of dissipation, whose main features are controlled by the universality class of the quantum transition. This requires a particular tuning of the dissipative interactions, whose decay rate $u$ should scale as $usim t_s^{-kappa}$ with increasing the time scale $t_s$ of the KZ protocol, where the exponent $kappa = z/(y_mu+z)$ depends on the dynamic exponent $z$ and the renormalization-group dimension $y_mu$ of the driving Hamiltonian parameter. Our dynamic scaling arguments are supported by numerical results for KZ protocols applied to a one-dimensional fermionic wire undergoing a quantum transition in the same universality class of the quantum Ising chain, in the presence of dissipative mechanisms which include local pumping, decay, and dephasing.
We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are
The Kibble-Zurek mechanism constitutes one of the most fascinating and universal phenomena in the physics of critical systems. It describes the formation of domains and the spontaneous nucleation of topological defects when a system is driven across
We present an analog of the phenomenon of orthogonality catastrophe in quantum many body systems subject to a local dissipative impurity. We show that the fidelity $F(t)$, giving a measure for distance of the time-evolved state from the initial one,
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production satur
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea