ﻻ يوجد ملخص باللغة العربية
We consider a dynamic protocol for quantum many-body systems, which enables to study the interplay between unitary Hamiltonian driving and random local projective measurements. While the unitary dynamics tends to increase entanglement, local measurements tend to disentangle, thus favoring decoherence. Close to a quantum transition where the system develops critical correlations with diverging length scales, the competition of the two drivings is analyzed within a dynamic scaling framework, allowing us to identify a regime (dynamic scaling limit) where the two mechanisms develop a nontrivial interplay. We perform a numerical analysis of this protocol in a measurement-driven Ising chain, which supports the scaling laws we put forward. The local measurement process generally tends to suppress quantum correlations, even in the dynamic scaling limit. The power law of the decay of the quantum correlations turns out to be enhanced at the quantum transition.
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. Pe
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production satur
Non-locality is a fundamental trait of quantum many-body systems, both at the level of pure states, as well as at the level of mixed states. Due to non-locality, mixed states of any two subsystems are correlated in a stronger way than what can be acc
We propose entanglement negativity as a fine-grained probe of measurement-induced criticality. We motivate this proposal in stabilizer states, where for two disjoint subregions, comparing their mutual negativity and their mutual information leads to
We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of spatially localized vibrational modes, serving as a model of Dynamic Nuclear Polarization. We show that even when the many-body eigenstates of th