ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-stable charging of fast-scrambling SYK quantum batteries

133   0   0.0 ( 0 )
 نشر من قبل Matteo Carrega
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collective behavior strongly influences the charging dynamics of quantum batteries (QBs). Here, we study the impact of nonlocal correlations on the energy stored in a system of $N$ QBs. A unitary charging protocol based on a Sachdev-Ye-Kitaev (SYK) quench Hamiltonian is thus introduced and analyzed. SYK models describe strongly interacting systems with nonlocal correlations and fast thermalization properties. Here, we demonstrate that, once charged, the average energy stored in the QB is very stable, realizing an ultraprecise charging protocol. By studying fluctuations of the average energy stored, we show that temporal fluctuations are strongly suppressed by the presence of nonlocal correlations at all time scales. A comparison with other paradigmatic examples of many-body QBs shows that this is linked to the collective dynamics of the SYK model and its high level of entanglement. We argue that such feature relies on the fast scrambling property of the SYK Hamiltonian, and on its fast thermalization properties, promoting this as an ideal model for the ultimate temporal stability of a generic QB. Finally, we show that the temporal evolution of the ergotropy, a quantity that characterizes the amount of extractable work from a QB, can be a useful probe to infer the thermalization properties of a many-body quantum system.

قيم البحث

اقرأ أيضاً

164 - Fadi Sun , Jinwu Ye 2019
We develop a systematic and unified random matrix theory to classify Sachdev-Ye-Kitaev (SYK) and supersymmetric (SUSY) SYK models and also work out the structure of the energy levels in one periodic table. The SYK with even $q$- and SUSY SYK with odd $q$-body interaction, $N$ even or odd number of Majorana fermions are put on the same footing in the minimal Hilbert space, $Npmod 8$ and $qpmod 4$ double Bott periodicity are identified. Exact diagonalizations are performed to study both the bulk energy level statistics and hard edge behaviours. A new moment ratio of the smallest positive eigenvalue is introduced to determine hard edge index efficiently. Excellent agreements between the ED results and the symmetry classifications are demonstrated. Our complete and systematic methods can be transformed to map out more complicated periodic tables of SYK models with more degree of freedoms, tensor models and symmetry protected topological phases. Possible classification of charge neutral quantum black holes are hinted.
The exactly-solvable Sachdev-Ye-Kitaev (SYK) model has recently received considerable attention in both condensed matter and high energy physics because it describes quantum matter without quasiparticles, while being at the same time the holographic dual of a quantum black hole. In this Letter, we examine SYK-based charging protocols of quantum batteries with N quantum cells. Extensive numerical calculations based on exact diagonalization for N up to 16 strongly suggest that the optimal charging power of our SYK quantum batteries displays a super-extensive scaling with N that stems from genuine quantum mechanical effects. While the complexity of the nonequilibrium SYK problem involved in the charging dynamics prevents us from an analytical proof, we believe that this Letter offers the first (to the best of our knowledge) strong numerical evidence of a quantum advantage occurring due to the maximally-entangling underlying quantum dynamics.
Recent work has shown that coupling two identical Sachdev-Ye-Kitaev (SYK) models can realize a phase of matter that is holographically dual to an eternal traversable wormhole. This phase supports revival oscillations between two quantum chaotic syste ms that can be interpreted as information traversing the wormhole. Here we generalize these ideas to a pair of coupled SYK models with complex fermions that respect a global U(1) charge symmetry. Such models show richer behavior than conventional SYK models with Majorana fermions and may be easier to realize experimentally. We consider two different couplings, namely tunneling and charge-conserving two-body interactions, and obtain the corresponding phase diagram using a combination of numerical and analytical techniques. At low temperature we find a charge-neutral gapped phase that supports revival oscillations, with a ground state close to the thermofield double, which we argue is dual to a traversable wormhole. We also find two different gapless non-Fermi liquid phases with tunable charge density which we interpret as dual to a `large and `small charged black hole. The gapped and gapless phases are separated by a first-order phase transition of the Hawking-Page type. Finally, we discuss an SU(2)-symmetric limit of our model that is closely related to proposed realizations of SYK physics with spinful fermions in graphene, and explain its relevance for future experiments on this system.
Given a quantum many-body system with few-body interactions, how rapidly can quantum information be hidden during time evolution? The fast scrambling conjecture is that the time to thoroughly mix information among N degrees of freedom grows at least logarithmically in N. We derive this inequality for generic quantum systems at infinite temperature, bounding the scrambling time by a finite decay time of local quantum correlations at late times. Using Lieb-Robinson bounds, generalized Sachdev-Ye-Kitaev models, and random unitary circuits, we propose that a logarithmic scrambling time can be achieved in most quantum systems with sparse connectivity. These models also elucidate how quantum chaos is not universally related to scrambling: we construct random few-body circuits with infinite Lyapunov exponent but logarithmic scrambling time. We discuss analogies between quantum models on graphs and quantum black holes, and suggest methods to experimentally study scrambling with as many as 100 sparsely-connected quantum degrees of freedom.
We study the charging process of open quantum batteries mediated by a common dissipative environment in two different scenarios. In the first case, we consider a quantum charger-battery model in the presence of a non-Markovian environment. Where the battery can be properly charged in a strong coupling regime, without any external power and any direct interaction with the charger, i.e., a wireless-like charging happens. The environment plays a major role in the charging of the battery, while this does not happen in a weak coupling regime. In the second scenario, we show the effect of individual and collective spontaneous emission rates on the charging process of quantum batteries by considering a two-qubit system in the presence of Markovian dynamics. Our results demonstrate that open batteries can be satisfactorily charged in Markovian dynamics by employing an underdamped regime and/or strong external fields. We also present a robust battery by taking into account subradiant states and an intermediate regime. Moreover, we propose an experimental setup to explore the ergotropy in the first scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا