ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics after quenches in one-dimensional quantum Ising-like systems

153   0   0.0 ( 0 )
 نشر من قبل Davide Rossini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the out-of-equilibrium dynamics of one-dimensional quantum Ising-like systems, arising from sudden quenches of the Hamiltonian parameter $g$ driving quantum transitions between disordered and ordered phases. In particular, we consider quenches to values of $g$ around the critical value $g_c$, and mainly address the question whether, and how, the quantum transition leaves traces in the evolution of the transverse and longitudinal magnetizations during such a deep out-of-equilibrium dynamics. We shed light on the emergence of singularities in the thermodynamic infinite-size limit, likely related to the integrability of the model. Finite systems in periodic and open boundary conditions develop peculiar power-law finite-size scaling laws related to revival phenomena, but apparently unrelated to the quantum transition, because their main features are generally observed in quenches to generic values of $g$. We also investigate the effects of dissipative interactions with an environment, modeled by a Lindblad equation with local decay and pumping dissipation operators within the quadratic fermionic model obtainable by a Jordan-Wigner mapping. Dissipation tends to suppress the main features of the unitary dynamics of closed systems. We finally address the effects of integrability breaking, due to further lattice interactions, such as in anisotropic next-to-nearest neighbor Ising (ANNNI) models. We show that some qualitative features of the post-quench dynamics persist, in particular the different behaviors when quenching to quantum ferromagnetic and paramagnetic phases, and the revival phenomena due to the finite size of the system.



قيم البحث

اقرأ أيضاً

The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3<d<4, with a clear locat ion of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T geq 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value phi = 1/(d-1) to the new one phi = 1/2(d-1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent phi = 1/2(d-1) in the quantum tricritical region.
We study the problem of a quantum quench in which the initial state is the ground state of an inhomogeneous hamiltonian, in two different models, conformal field theory and ordinary free field theory, which are known to exhibit thermalisation of fini te regions in the homogeneous case. We derive general expressions for the evolution of the energy flow and correlation functions, as well as the entanglement entropy in the conformal case. Comparison of the results of the two approaches in the regime of their common validity shows agreement up to a point further discussed. Unlike the thermal analogue, the evolution in our problem is non-diffusive and can be physically interpreted using an intuitive picture of quasiparticles emitted from the initial time hypersurface and propagating semiclassically.
277 - Fabio Franchini 2016
This monograph introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bet he Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.
We study persistence in one-dimensional ferromagnetic and anti-ferromagnetic nearest-neighbor Ising models with parallel dynamics. The probability P(t) that a given spin has not flipped up to time t, when the system evolves from an initial random con figuration, decays as P(t) sim 1/t^theta_p with theta_p simeq 0.75 numerically. A mapping to the dynamics of two decoupled A+A to 0 models yields theta_p = 3/4 exactly. A finite size scaling analysis clarifies the nature of dynamical scaling in the distribution of persistent sites obtained under this dynamics.
We study in general the time-evolution of correlation functions in a extended quantum system after the quench of a parameter in the hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical ph enomena in d+1 dimensions. For d=1 this allows to use the powerful tools of conformal field theory in the case of critical evolution. Several results are obtained in generic dimension in the gaussian (mean-field) approximation. These predictions are checked against the real-time evolution of some solvable models that allows also to understand which features are valid beyond the critical evolution. All our findings may be explained in terms of a picture generally valid, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate with a finite speed through the system. Furthermore we show that the long-time results can be interpreted in terms of a generalized Gibbs ensemble. We discuss some open questions and possible future developments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا