ترغب بنشر مسار تعليمي؟ اضغط هنا

A pair of complex-conjugate fixed points that lie close to the real axis generates a large mass hierarchy in the real renormalization group flow that passes in between them. We show that pairs of complex fixed points that are close to the real axis a nd to one another generate multiple hierarchies, some of which can be parametrically enhanced. We illustrate this effect at weak coupling with field-theory examples, and at strong coupling using holography. We also construct complex flows between complex fixed points, including flows that violate the $c$-theorem.
We use top-down holography to study the thermodynamics of a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons theories with M-theory duals. For generic values of the parameter, the theories exhibit a mass gap but no confinement, meaning no linear quark-antiquark potential. For two specific values of the parameter they flow to an infrared fixed point or to a confining vacuum, respectively. As in the Klebanov-Strassler solution, on the gravity side the mass gap is generated by the smooth collapse to zero size of a cycle in the internal geometry. We uncover a rich phase diagram with thermal phase transitions of first and second order, a triple point and a critical point.
Plasma balls are droplets of deconfined plasma surrounded by a confining vacuum. We present the first holographic simulation of their real-time evolution via the dynamics of localized, finite-energy black holes in the five-dimensional anti-de Sitter (AdS) soliton background. The dual gauge theory is four-dimensional, N=4 super Yang-Mills compactified on a circle with supersymmetry-breaking boundary conditions. We consider horizonless initial data sourced by a massless scalar field. Prompt scalar field collapse then produces an excited black hole at the bottom of the geometry together with gravitational and scalar radiation. The radiation disperses to infinity in the noncompact directions and corresponds to particle production in the dual gauge theory. The black hole evolves toward the dual of an equilibrium plasma ball on a time scale longer than naively expected. This feature is a direct consequence of confinement and is caused by long-lived, periodic disturbances bouncing between the bottom of the AdS soliton and the AdS boundary.
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a re close to the real axis, the system typically exhibits walking behavior with Miransky (or Berezinsky-Kosterlitz-Thouless) scaling. We present a novel realization of these phenomena at strong coupling by means of the gauge/gravity duality, and give evidence for the conjectured existence of complex conformal field theories at the fixed points.
We have recently shown that the ground state of ${cal N} = 4$, SU($N_{rm{tiny c}}$) super Yang--Mills coupled to $N_{rm{tiny f}} ll N_{rm{tiny c}}$ flavors, in the presence of non-zero isospin and R-symmetry charges, is a supersymmetric, superfluid, color superconductor. The holographic description consists of $N_{rm{tiny f}}$ D7-brane probes in AdS$_5times$S$^5$ with electric and instantonic fields on their worldvolume. These correspond to fundamental strings and D3-branes dissolved on the D7-branes, respectively. Here we use this description to determine the spectrum of mesonic excitations. As expected for a charged superfluid we find non-relativistic, massless Goldstone modes. We also find extra ungapped modes that are not associated to the breaking of any global symmetries but to the supersymmetric nature of the ground state. If the quark mass is much smaller than the scale of spontaneous symmetry breaking a pseudo-Goldstone boson is also present. We highlight some new features that appear only for $N_{rm{tiny f}}> 2$. We show that, in the generic case of unequal R-symmetry charges, the dissolved strings and D3-branes blow up into a D5-brane supertube stretched between the D7-branes.
We study the mass spectrum of spin-0 and spin-2 composite states in a one-parameter family of three-dimensional field theories by making use of their dual descriptions in terms of supergravity. These theories exhibit a mass gap despite being non-conf ining, and by varying a parameter can be made to flow arbitrarily close to an IR fixed point corresponding to the Ooguri-Park conformal field theory. At the opposite end of parameter space, the dynamics becomes quasi-confining. The glueball spectrum interpolates between these two limiting cases, and for nearly conformal dynamics approaches the result of the Ooguri-Park theory deformed by a relevant operator. In order to elucidate under which circumstances quasi-conformal dynamics leads to the presence of a light pseudo-dilaton, we perform a study of the dependence of the spectrum on the position of a hard-wall IR cutoff and find that, in the present case, the mass of such state is lifted by deep-IR effects.
We use holography to study $d=4$, $mathcal{N}=4$, SU($N_{rm tiny{c}}$) super Yang-Mills coupled to $N_{rm tiny{F}} ll N_{rm tiny{c}}$ quark flavors. We place the theory at finite isospin density $n_{rm tiny{I}}$ by turning on an isospin chemical pote ntial $mu_{rm tiny{I}}=M_{rm tiny{q}}$, with $M_{rm tiny{q}}$ the quark mass. We also turn on two R-symmetry charge densities $n_1=n_2$. We show that the ground state is a supersymmetric, superfluid, color superconductor, namely a finite-density state that preserves a fraction of supersymmetry in which part of the global symmetries and part of the gauge symmetries are spontaneously broken. The holographic description consists of $N_{rm tiny{F}}$ D7-brane probes in $mbox{AdS}_5 times mbox{S}^5$. The symmetry breaking is due to the dissolution of some D3-branes inside the D7-branes triggered by the electric field associated to the isospin charge. The massless spectrum contains Goldstone bosons and their fermionic superpartners. The massive spectrum contains long-lived, mesonic quasi-particles if $n_{rm tiny{I}} ll mu_{rm tiny{I}}^3$, and no quasi-particles otherwise. We discuss the possibility that, despite the presence of mass scales and charge densities in the theory, conformal and relativistic invariance arise as emergent symmetries in the infrared.
We construct the gravity dual of $d=4$, $mathcal{N}=4$, SU($N_rm{c}$) super Yang-Mills theory, coupled to $N_rm{f}$ flavors of dynamical quarks, at non-zero temperature $T$ and non-zero quark density $N_rm{q}$. The supergravity solutions possess a re gular horizon if $T>0$ and include the backreaction of $N_rm{c}$ color D3-branes and $N_rm{f}$ flavor D7-branes with $N_rm{q}$ units of electric flux on their worldvolume. At zero temperature the solutions interpolate between a Landau pole singularity in the ultraviolet and a Lifshitz geometry in the infrared. At high temperature the thermodynamics is directly sensitive to the Landau pole, whereas at low temperature it is not, as expected from effective field theory. At low temperature and sufficiently high charge density we find thermodynamic and dynamic instabilities towards the spontaneous breaking of translation invariance.
We revisit a one-parameter family of three-dimensional gauge theories with known supergravity duals. We show that three infrared behaviors are possible. For generic values of the parameter, the theories exhibit a mass gap but no confinement, meaning no linear quark-antiquark potential; for one limiting value of the parameter the theory flows to an infrared fixed point; and for another limiting value it exhibits both a mass gap and confinement. Theories close to these limiting values exhibit quasi-conformal and quasi-confining dynamics, respectively. Eleven-dimensional supergravity provides a simple, geometric explanation of these features.
Holography for UV-incomplete gauge theories is important but poorly understood. A paradigmatic example is $d=4$, $mathcal{N}=4$ super Yang-Mills coupled to $N_f$ quark flavors, which possesses a Landau pole at a UV scale $Lambda_{LP}$. The dual gravi ty solution exhibits a UV singularity at a finite proper distance along the holographic direction. Despite this, holographic renormalization can be fully implemented via analytic continuation to an AdS solution. The presence of a UV cut-off manifests itself in several interesting ways. At energies $E ll Lambda_{LP}$ no pathologies appear, as expected from effective field theory. In contrast, at scales $E lesssim Lambda_{LP}$ the gravitational potential becomes repulsive, and at temperatures $T lesssim Lambda_{LP}$ the specific heat becomes negative. Although we focus on $mathcal{N}=4$ super Yang-Mills with flavor, our qualitative results apply to a much more general class of theories, since they only depend on the fact that the metric near the UV singularity is a hyper-scaling violating metric with exponent $theta > d-1$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا