ﻻ يوجد ملخص باللغة العربية
We use holography to study $d=4$, $mathcal{N}=4$, SU($N_{rm tiny{c}}$) super Yang-Mills coupled to $N_{rm tiny{F}} ll N_{rm tiny{c}}$ quark flavors. We place the theory at finite isospin density $n_{rm tiny{I}}$ by turning on an isospin chemical potential $mu_{rm tiny{I}}=M_{rm tiny{q}}$, with $M_{rm tiny{q}}$ the quark mass. We also turn on two R-symmetry charge densities $n_1=n_2$. We show that the ground state is a supersymmetric, superfluid, color superconductor, namely a finite-density state that preserves a fraction of supersymmetry in which part of the global symmetries and part of the gauge symmetries are spontaneously broken. The holographic description consists of $N_{rm tiny{F}}$ D7-brane probes in $mbox{AdS}_5 times mbox{S}^5$. The symmetry breaking is due to the dissolution of some D3-branes inside the D7-branes triggered by the electric field associated to the isospin charge. The massless spectrum contains Goldstone bosons and their fermionic superpartners. The massive spectrum contains long-lived, mesonic quasi-particles if $n_{rm tiny{I}} ll mu_{rm tiny{I}}^3$, and no quasi-particles otherwise. We discuss the possibility that, despite the presence of mass scales and charge densities in the theory, conformal and relativistic invariance arise as emergent symmetries in the infrared.
We have recently shown that the ground state of ${cal N} = 4$, SU($N_{rm{tiny c}}$) super Yang--Mills coupled to $N_{rm{tiny f}} ll N_{rm{tiny c}}$ flavors, in the presence of non-zero isospin and R-symmetry charges, is a supersymmetric, superfluid,
I review applications of superconformal algebra. light-front holography, and an extended form of conformal symmetry to hadron spectroscopy and dynamics. QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and
We perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular
Light-Front Quantization provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-f
We study nonequilibrium steady states in a holographic superconductor under time periodic driving by an external rotating electric field. We obtain the dynamical phase diagram. Superconducting phase transition is of first or second order depending on