ﻻ يوجد ملخص باللغة العربية
We have recently shown that the ground state of ${cal N} = 4$, SU($N_{rm{tiny c}}$) super Yang--Mills coupled to $N_{rm{tiny f}} ll N_{rm{tiny c}}$ flavors, in the presence of non-zero isospin and R-symmetry charges, is a supersymmetric, superfluid, color superconductor. The holographic description consists of $N_{rm{tiny f}}$ D7-brane probes in AdS$_5times$S$^5$ with electric and instantonic fields on their worldvolume. These correspond to fundamental strings and D3-branes dissolved on the D7-branes, respectively. Here we use this description to determine the spectrum of mesonic excitations. As expected for a charged superfluid we find non-relativistic, massless Goldstone modes. We also find extra ungapped modes that are not associated to the breaking of any global symmetries but to the supersymmetric nature of the ground state. If the quark mass is much smaller than the scale of spontaneous symmetry breaking a pseudo-Goldstone boson is also present. We highlight some new features that appear only for $N_{rm{tiny f}}> 2$. We show that, in the generic case of unequal R-symmetry charges, the dissolved strings and D3-branes blow up into a D5-brane supertube stretched between the D7-branes.
We use holography to study $d=4$, $mathcal{N}=4$, SU($N_{rm tiny{c}}$) super Yang-Mills coupled to $N_{rm tiny{F}} ll N_{rm tiny{c}}$ quark flavors. We place the theory at finite isospin density $n_{rm tiny{I}}$ by turning on an isospin chemical pote
We analyze color superconductivity of one massive flavor quark matter at moderate baryon density with a spin-zero color-sextet condensate. The most general Higgs-type ground-state expectation value of the order parameter implies complete breakdown of
I review applications of superconformal algebra. light-front holography, and an extended form of conformal symmetry to hadron spectroscopy and dynamics. QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and
Light-Front Quantization provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-f
We consider the phenomenon of the Andreev reflection of hadrons at the interface between hadronic and color superconducting phases, which are expected to appear in the neutron star interior. Here, hadrons are defined as a superposition of constituent