ﻻ يوجد ملخص باللغة العربية
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points are close to the real axis, the system typically exhibits walking behavior with Miransky (or Berezinsky-Kosterlitz-Thouless) scaling. We present a novel realization of these phenomena at strong coupling by means of the gauge/gravity duality, and give evidence for the conjectured existence of complex conformal field theories at the fixed points.
In this paper, we apply the K-theory scheme of classifying the topological insulators/superconductors to classify the topological classes of the massive multi-flavor fermions in anti-de Sitter (AdS) space. In the context of AdS/CFT correspondence, th
We explore a conformal field theoretic interpretation of the holographic entanglement of purification, which is defined as the minimal area of entanglement wedge cross section. We argue that in AdS3/CFT2, the holographic entanglement of purification
Holographic entanglement entropy and the first law of thermodynamics are believed to decode the gravity theory in the bulk. In particular, assuming the Ryu-Takayanagi (RT)cite{ryu-takayanagi} formula holds for ball-shaped regions on the boundary ar
We derive dynamics of the entanglement wedge cross section directly from the two-dimensional holographic CFTs with a local operator quench. This derivation is based on the reflected entropy, a correlation measure for mixed states. We further compare
It is widely expected that at sufficiently high temperatures order is always lost, e.g. magnets loose their ferromagnetic properties. We pose the question of whether this is always the case in the context of quantum field theory in $d$ space dimensio