ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Holographic Quark Matter Crystal

41   0   0.0 ( 0 )
 نشر من قبل Javier Tarrio
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct the gravity dual of $d=4$, $mathcal{N}=4$, SU($N_rm{c}$) super Yang-Mills theory, coupled to $N_rm{f}$ flavors of dynamical quarks, at non-zero temperature $T$ and non-zero quark density $N_rm{q}$. The supergravity solutions possess a regular horizon if $T>0$ and include the backreaction of $N_rm{c}$ color D3-branes and $N_rm{f}$ flavor D7-branes with $N_rm{q}$ units of electric flux on their worldvolume. At zero temperature the solutions interpolate between a Landau pole singularity in the ultraviolet and a Lifshitz geometry in the infrared. At high temperature the thermodynamics is directly sensitive to the Landau pole, whereas at low temperature it is not, as expected from effective field theory. At low temperature and sufficiently high charge density we find thermodynamic and dynamic instabilities towards the spontaneous breaking of translation invariance.


قيم البحث

اقرأ أيضاً

We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding Equation of State (EoS) is matched with state-of-the-art results for dense nuclear matter, we consistently obse rve a first order phase transition at densities between two and seven times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EoSs, we find maximal stellar masses in the excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EoSs. Our calculation predicts that no quark matter exists inside neutron stars.
We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-holographic fermions, exhibit strange metallic behavior in a suitable large $N$ limit. These theories describe lattices of hypermultiplet defects interacting with parity-preserving supersymmetric Chern-Simons theories with $U(N) times U(N)$ gauge groups at levels $pm k$. They have dual gravitational descriptions in terms of lattices of probe M2 branes in $AdS_4 times S^7/Z_k$ (for $N gg 1, N gg k^5$) or probe D2 branes in $AdS_4 times CP^3$ (for $N gg k gg 1, N ll k^5$). We discuss several challenges one faces in maintaining the success of these models at finite $N$, including backreaction of the probes in the gravity solutions and radiative corrections in the weakly coupled field theory limit.
We establish a holographic bottom-up model which covers both the baryonic and quark matter phases in cold and dense QCD. This is obtained by including the baryons using simple approximation schemes in the V-QCD model, which also includes the backreac tion of the quark matter to the dynamics of pure Yang-Mills. We examine two approaches for homogeneous baryon matter: baryons as a thin layer of noninteracting matter in the holographic bulk, and baryons with a homogeneous bulk gauge field. We find that the second approach exhibits phenomenologically reasonable features. At zero temperature, the vacuum, baryon, and quark matter phases are separated by strongly first order transitions as the chemical potential varies. The equation of state in the baryonic phase is found to be stiff, i.e., the speed of sound clearly exceeds the value $c_s^2=1/3$ of conformal plasmas at high baryon densities.
We propose a simplified protocol of quantum energy teleportation (QET) for holographic conformal field theory (CFT) in 3-dimensional anti-de Sitter space with or without black hole. As a tentative proposal, we simplify the standard QET by replacing A lices local measurement with the local projection, which excites the system from ground state into a particular state dual to a Banados geometry. We then mimic Bobs local operation of the usual QET for extracting energy by deforming the UV surface with a local bump. Adopting the surface/state duality this deformation corresponds to local unitary. We evaluate the extraction of energy from the holographic stress tensor, and find that Bob always gains energy extraction in our protocol. This could be related to the positive energy theorem of the dual gravity. Moreover, the ratio of extraction energy to injection one is a universal function of the UV surface deformation profile.
We study the influence of a background magnetic field on the $J/psi$ vector meson in a DBI-extension of the soft wall model, building upon our earlier work Phys. Rev. D91, 086002 (2015). In this specific holographic QCD model, we discuss the heavy qu ark number susceptibility and diffusion constants of charm quarks and their dependence on the magnetic field by either a hydrodynamic expansion or by numerically solving the differential equation. This allows us to determine the response of these transport coefficients to the magnetic field. The effects of the latter are considered both from a direct as indirect (medium) viewpoint. As expected, we find a magnetic field induced anisotropic diffusion, with a stronger diffusion in the longitudinal direction compared to the transversal one. We backup, at least qualitatively, our findings with a hanging string analysis of heavy quark diffusion in a magnetic field. From the quark number susceptibility we can extract an estimate for the effective deconfinement temperature in the heavy quark sector, reporting consistency with the phenomenon of inverse magnetic catalysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا