ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a minimal model that provides a description of the magnetic and thermodynamic properties of Eu. The model contains two exchange coupling parameters, which are calculated using Density Functional Theory, and a local easy axis magnetic aniso tropy term. The classical ground state of the system is a generalization of the well known 120$^circ$ structure observed in triangular antiferromagnets. Monte Carlo simulations show two phase transitions as a function of the temperature. With increasing temperature, the system transitions from the ground state into a high-entropy collinear antiferromagnet, which in turn at higher temperatures presents a second order transition to a paramagnetic state. A high enough external magnetic field parallel to the anisotropy axis produces a spin-flop transition at low temperatures. The field also reduces the temperature range of stability of the collinear antiferromagnet phase and leads to a single phase transition as a function of the temperature. The reported behavior of the specific heat, the magnetization, and the magnetic susceptibility is in agreement with the available experimental data. Finally, we present the magnetic phase diagrams for magnetic fields parallel and perpendicular to the easy axis.
We present a phenomenological theory for the ferromagnetic transition temperature, the magnetic susceptibility at high temperatures, and the structural distortion in the La$_{1-y}$(Ca$_{1-x}$Sr$_{x}$)$_{y}$MnO$_{3}$ system. We construct a Ginzburg-La ndau free energy that describes the magnetic and the structural transitions, and a competition between them. The parameters of the magnetic part of the free energy are derived from a mean-field solution of the magnetic interaction for arbitrary angular momentum. The theory provides a qualitative description of the observed magnetic and structural phase transitions as functions of Sr-doping level ($x$) for $y=0.25$.
We calculate the quasiparticle dispersion and spectral weight of the quasiparticle that results when a hole is added to an antiferromagnetically ordered CuO$_2$ plane of a cuprate superconductor. We also calculate the magnon contribution to the quasi particle spectral function. We start from a multiband model for the cuprates considered previously [Nat. Phys. textbf{10}, 951 (2014)]. We map this model and the operator for creation of an O hole to an effective one-band generalized $t-J$ model, without free parameters. The effective model is solved using the state of the art self-consistent Born approximation. Our results reproduce all the main features of experiments. They also reproduce qualitatively the dispersion of the multiband model, giving better results for the intensity near wave vector $(pi,pi)$, in comparison with the experiments. In contrast to what was claimed in [Nat. Phys. textbf{10}, 951 (2014)], we find that spin fluctuations play an essential role in the dynamics of the quasiparticle, and hence in both its weight and dispersion.
118 - A. A. Aligia 2020
In a recent work [M. Jiang, M. Moeller, M. Berciu, and G. A. Sawatzky, Phys. Rev. B textbf{101}, 035151 (2020)], the authors solved a model with a Cu impurity in an O-2p band as an approximation to the local electronic structure of a hole doped cupra te. One of their conclusions is that the ground-state has only $sim 50$ % overlap with a Zhang-Rice singlet (ZRS). This claim is based on the definition of the ZRS in a different representation, in which the charge fluctuations at the Cu site have been eliminated by a canonical transformation. The correct interpretation of the results, based on known low-energy reduction procedures for a multiband model including 3d$^8$ and 3d$^{10}$ configurations of Cu, indicates that this overlap is near 94 %.
We study the heat current through two capacitively coupled quantum dots coupled in series with two conducting leads at different temperatures $T_L$ and $T_R$ in the spinless case (valid for a high applied magnetic field). Our results are also valid f or the heat current through a single quantum dot with strongly ferromagnetic leads pointing in opposite directions (so that the electrons with given spin at the dot can jump only to one lead) or through a quantum dot with two degenerate levels with destructive quantum interference and high magnetic field. Although the charge current is always zero, the heat current is finite when the interdot Coulomb repulsion $U$ is taken into account due to many-body effects. We study the thermal conductance as a function of temperature and the dependence of the thermal current with the couplings to the leads, $T_L-T_R$, energy levels of the dots and $U$, including conditions for which an orbital Kondo regime takes place. When the energy levels of the dots are different, the device has rectifying properties for the thermal current. We find that the ratio between the thermal current resulting from a thermal bias $T_L>T_R$ and the one from $T_L<T_R$ is maximized for particular values of the energy levels, one above and the other below the Fermi level.
We study the low-temperature properties of the generalized Anderson impurity model in which two localized configurations, one with two doublets and the other with a triplet, are mixed by two degenerate conduction channels. By using the numerical reno rmalization group and the non-crossing approximation, we analyze the impurity entropy, its spectral density, and the equilibrium conductance for several values of the model parameters. Marked differences with respect to the conventional one-channel spin $s=1/2$ Anderson model, that can be traced as hallmarks of an impurity spin $S=1$, are found in the Kondo temperature, the width and position of the charge transfer peak, as well as the temperature dependence of the equilibrium conductance. Furthermore, we analyze the rich effects of a single-ion magnetic anisotropy $D$ on the Kondo behavior. In particular, as shown before, for large enough positive $D$ the system behaves as a non-Landau Fermi liquid that cannot be adiabatically connected to a non-interacting system turning off the interactions. For negative $D$ the Kondo effect is strongly suppressed. The model studied is suitable for a comprehensive analysis for recent investigations of a single Ni impurity embedded into an Au chain.
158 - A. A. Aligia , C. Helman 2018
Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr$_3$Cr$_2$O$_7$, the $n=2$ member of the Ruddlesden-Popper Sr$_{n+1}$Cr$_n$O$_{3n+1}$ system. The model consists of effective $t_{2g}$ orbitals of Cr in two square lattices, one above the other. The model is further reduced at low energies and two electrons per site, to an effective Kugel-Khomskii Hamiltonian that describes interacting spins 1 and pseudospins 1/2 at each site describing spin and orbitals degrees of freedom respectively. We solve this Hamiltonian at zero temperature using pseudospin bond operators and spin waves. Our results confirm a previous experimental and theoretical study that proposes spin ordering antiferromagnetic in the planes and ferromagnetic between planes, while pseudospins form vertical singlets, although the interplane separation is larger than the nearest-neighbor distance in the plane. We explain the physics behind this rather unexpected behavior.
136 - A. A. Aligia 2018
Starting from the three-band Hubbard model for the cuprates, we calculate analytically the four-spin cyclic exchange in the limit of infinite on-site Coulomb repulsion and zero O-O hopping $t_{pp}$ using two methods: i) perturbation theory in $t_{pd} /Delta$, where $t_{pd}$ is the Cu-O hopping and $Delta$ the Cu-O charge transfer energy and ii) exact solution of a Cu$_4$O$_4$ plaquette. The latter method coincides with the first to order eight in $t_{pd}$ and permits to extend the results to $t_{pd}/Delta$ of order one. The results are relevant to recent experimental and theoretical research that relate the splitting of certain spin excitations with $Delta$ and the superconducting critical temperature.
94 - A. A. Aligia 2018
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.
143 - A. A. Aligia 2017
I present briefly some facts about nonequilibrium renormalized perturbation theory, correcting recent misleading statements in [E. Mu~noz, F. Zamani, L. Merker, T. A. Costi, and S. Kirchner, Journal of Physics: Conf. Series 807, 092001 (2017)], and d iscuss some results of this work using rSPT at equilibrium.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا