ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Relevance of Cu-3d multiplet structure in models of high Tc cuprates

119   0   0.0 ( 0 )
 نشر من قبل Armando A. Aligia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. A. Aligia




اسأل ChatGPT حول البحث

In a recent work [M. Jiang, M. Moeller, M. Berciu, and G. A. Sawatzky, Phys. Rev. B textbf{101}, 035151 (2020)], the authors solved a model with a Cu impurity in an O-2p band as an approximation to the local electronic structure of a hole doped cuprate. One of their conclusions is that the ground-state has only $sim 50$ % overlap with a Zhang-Rice singlet (ZRS). This claim is based on the definition of the ZRS in a different representation, in which the charge fluctuations at the Cu site have been eliminated by a canonical transformation. The correct interpretation of the results, based on known low-energy reduction procedures for a multiband model including 3d$^8$ and 3d$^{10}$ configurations of Cu, indicates that this overlap is near 94 %.



قيم البحث

اقرأ أيضاً

We revisit the problem of the spectra of two holes in a CuO$_{2}$ layer, modeled as a Cu-d$^{8}$ impurity with full multiplet structure coupled to a full O-2p band as an approximation to the local electronic structure of a hole doped cuprate. Unlike previous studies that treated the O band as a featureless bath, we describe it with a realistic tight binding model. While our results are in qualitative agreement with previous work, we find considerable quantitative changes when using the proper O-2p band structure. We also find (i) that only the ligand O-2p orbitals play an essential role, within this impurity model; (ii) that the three-orbital Emery model provides an accurate description for the subspace with $^{1}!A_1$ symmetry, which includes the ground-state in the relevant region of the phase diagram; (iii) that this ground-state has only $sim 50%$ overlap with a Zhang-Rice singlet; (iv) that there are other low-energy states, in subspaces with different symmetries, that are absent from the three-orbital Emery model and its one-band descendants. These states play an important role in describing the elementary excitations of doped cuprates.
128 - T. Goto , J. Tonishi , T. Suzuki 2008
To date, there has been no evidence for the macroscopic structural phase transition to the low temperature tetragonal structure (LTT) with a space group P42/ncm in high-TC cuprate of rare earth-free La2-xSrxCuO4 (LSCO). By investigating Cu-NMR on sin gle crystals, we have found that spatially incoherent LTT structure emerges below 50 K in the sample with x=0.12. This incoherent structure is considered to play a key role for the slight depression of the superconductivity around x=1/8.
124 - Sebastien Petit 2009
We present ab-initio calculations of effective magnetic exchange, $J$, as well as Hubbard parameters ($t$, $U$ and $delta varepsilon$) as a function of the local distribution of doping atoms for the high-$T_c$ superconducting $rm (Ca_xLa_{1-x})(Ba_{1 .75-x}La_{0.25+x})Cu_3O_y$ family. We found that both the exchange and the energies of the magnetic orbitals are strongly dependant on the local dopant distribution, both through the induced modification of the apical oxygen location and of the induced local electrostatic potential. The $J$ real-space map, for a random distribution of dopants, positively compares with observed STS gap inhomogeneity maps. Similarly, the orbital energy fluctuations induce weak charge inhomogeneities on copper sites, that can be positively compared with the observed LDOS inhomogeneities. These results clearly support an extrinsic origin of both the gap inhomogeneities and LDOS.
115 - Z.Y. Weng , D.N. Sheng , 2000
We present a self-consistent RVB theory which unifies the metallic (superconducting) phase with the half-filling antiferromagnetic (AF) phase. Two crucial factors in this theory include the RVB condensation which controls short-range AF spin correlat ions and the phase string effect introduced by hole hopping as a key doping effect. We discuss both the uniform and non-uniform mean-field solutions and show the unique features of the characteristic spin energy scale, superconducting transition temperature, and the phase diagram, which are all consistent with the experimental measurements of high-$T_c$ cuprates.
A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of exc itations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe we are able to track the dynamics of the dielectric function, unveiling an anomalous decrease of the scattering rate of the charge carriers in a pseudogap-like region of the temperature ($T$) and hole-doping ($p$) phase diagram. In this region, delimited by a well-defined $T^*_{neq}(p)$ line, the photo-excitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasi-particles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the single-band Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا