ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat current across a capacitively coupled double quantum dot for high magnetic field

124   0   0.0 ( 0 )
 نشر من قبل Armando A. Aligia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the heat current through two capacitively coupled quantum dots coupled in series with two conducting leads at different temperatures $T_L$ and $T_R$ in the spinless case (valid for a high applied magnetic field). Our results are also valid for the heat current through a single quantum dot with strongly ferromagnetic leads pointing in opposite directions (so that the electrons with given spin at the dot can jump only to one lead) or through a quantum dot with two degenerate levels with destructive quantum interference and high magnetic field. Although the charge current is always zero, the heat current is finite when the interdot Coulomb repulsion $U$ is taken into account due to many-body effects. We study the thermal conductance as a function of temperature and the dependence of the thermal current with the couplings to the leads, $T_L-T_R$, energy levels of the dots and $U$, including conditions for which an orbital Kondo regime takes place. When the energy levels of the dots are different, the device has rectifying properties for the thermal current. We find that the ratio between the thermal current resulting from a thermal bias $T_L>T_R$ and the one from $T_L<T_R$ is maximized for particular values of the energy levels, one above and the other below the Fermi level.

قيم البحث

اقرأ أيضاً

Dynamical processes induced by the external time-dependent fields can provide valuable insight into the characteristic energy scales of a given physical system. We investigate them here in a nanoscopic heterostructure, consisting of the double quantu m dot coupled in series to the superconducting and the metallic reservoirs, analyzing its response to (i)~abrupt bias voltage applied across the junction, (ii) sudden change of the energy levels, and imposed by (iii)~their periodic driving. We explore subgap properties of this setup which are strictly related to the in-gap quasiparticles and discuss their signatures manifested in the time-dependent charge currents. The characteristic multi-mode oscillations, their beating patters and photon-assisted harmonics reveal a rich spectrum of dynamical features that might be important for designing the superconducting qubits.
We investigate the Fano-Kondo interplay in an Aharonov-Bohm ring with an embedded non-interacting quantum dot and a Coulomb interacting quantum dot. Using a slave-boson mean-field approximation we diagonalize the Hamiltonian via scattering matrix the ory, and derive the conductance in the form of a Fano expression, which depends on the mean field parameters. We predict that in the Kondo regime the magnetic field leads to a gapped energy level spectrum due to hybridisation of the non-interacting QD state and the Kondo state, and can quantum-mechanically alter the electrons path preference. We demonstrate that an abrupt symmetry change in the Fano resonance, as seen experimentally, could be a consequence of an underlying Kondo channel.
Currents in a few-electron parabolic quantum dot placed into a perpendicular magnetic field are considered. We show that traditional ways of investigating the Wigner crystallization by studying the charge density correlation function can be supplemen ted by the examination of the density-current correlator. However, care must be exercised when constructing the correct projection of the multi-dimensional wave function space. The interplay between the magnetic field and Euler-liquid-like behavior of the electron liquid gives rise to persistent and local currents in quantum dots. We demonstrate these phenomena by collating a quasi-classical theory valid in high magnetic fields and an exact numerical solution of the many-body problem.
We calculate the nonequilibrium conductance of a system of two capacitively coupled quantum dots, each one connected to its own pair of conducting leads. The system has been used recently to perform pseudospin spectroscopy by controlling independentl y the voltages of the four leads. The pseudospin is defined by the orbital occupation of one or the other dot. Starting from the SU(4) symmetric point of spin and pseudospin degeneracy in the Kondo regime, for an odd number of electrons in the system, we show how the conductance through each dot varies as the symmetry is reduced to SU(2) by a pseudo-Zeeman splitting, and as bias voltages are applied to any of the dots. We analize the expected behavior of the system in general, and predict characteristic fingerprint features of the SU(4) to SU(2) crossover that have not been observed so far.
We propose a nanoscale device consisting of a double quantum dot with strong intra- and inter- dot Coulomb repulsions. In this design, the current can only flow through the lower dot, but is triggered by the gate-controlled occupancy of the upper dot . At low temperatures, our calculations predict the double dot to pass through a narrow Kondo regime, resulting in highly sensitive switching characteristics between three well-defined states : insulating, normal conduction and resonant conduction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا