ﻻ يوجد ملخص باللغة العربية
We study the low-temperature properties of the generalized Anderson impurity model in which two localized configurations, one with two doublets and the other with a triplet, are mixed by two degenerate conduction channels. By using the numerical renormalization group and the non-crossing approximation, we analyze the impurity entropy, its spectral density, and the equilibrium conductance for several values of the model parameters. Marked differences with respect to the conventional one-channel spin $s=1/2$ Anderson model, that can be traced as hallmarks of an impurity spin $S=1$, are found in the Kondo temperature, the width and position of the charge transfer peak, as well as the temperature dependence of the equilibrium conductance. Furthermore, we analyze the rich effects of a single-ion magnetic anisotropy $D$ on the Kondo behavior. In particular, as shown before, for large enough positive $D$ the system behaves as a non-Landau Fermi liquid that cannot be adiabatically connected to a non-interacting system turning off the interactions. For negative $D$ the Kondo effect is strongly suppressed. The model studied is suitable for a comprehensive analysis for recent investigations of a single Ni impurity embedded into an Au chain.
The underscreened Kondo effect is studied within a model of two impurities S=1 interacting with the conduction band and via an interimpurity coupling $Kvec{S_1}.vec{S_2}$. Using a mean-field treatment of the bosonized Hamiltonian, we show that there
We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density
Over-screened Kondo effect is feasible in carbon nanotube quantum dot junction hosting a spin $tfrac{1}{2}$ atom with single $s$-wave valence electron (e.g Au). The idea is to use the two valleys as two symmetry protected flavor quantum numbers $xi={
We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junctio
We show that a self-assembled phase of potassium (K) doped single-layer para-sexiphenyl (PSP) film on gold substrate is an excellent platform for studying the two-impurity Kondo model. On K-doped PSP molecules well separated from others, we find a Ko