ترغب بنشر مسار تعليمي؟ اضغط هنا

Leading temperature dependence of the conductance in Kondo-correlated quantum dots

95   0   0.0 ( 0 )
 نشر من قبل Armando A. Aligia
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. A. Aligia




اسأل ChatGPT حول البحث

Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.



قيم البحث

اقرأ أيضاً

79 - T. A. Costi 2019
Recent experiments have measured the signatures of the Kondo effect in the zero-field thermopower of strongly correlated quantum dots [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018); Dutta {em et al.,} Nano Lett. {bf 19}, 506 (2019)]. They confirm the predicted Kondo-induced sign change in the thermopower, upon increasing the temperature through a gate-voltage dependent value $T_{1}gtrsim T_{rm K}$, where $T_{rm K}$ is the Kondo temperature. Here, we use the numerical renormalization group (NRG) method to investigate the effect of a finite magnetic field $B$ on the thermopower of such quantum dots. We show that, for fields $B$ exceeding a gate-voltage dependent value $B_{0}$, an additional sign change takes place in the Kondo regime at a temperature $T_{0}(Bgeq B_{0})>0$ with $T_0<T_1$. The field $B_{0}$ is comparable to, but larger than, the field $B_{c}$ at which the zero-temperature spectral function splits in a magnetic field. The validity of the NRG results for $B_{0}$ are checked by comparison with asymptotically exact higher-order Fermi-liquid calculations [Oguri {em et al.,} Phys. Rev. B {bf 97}, 035435 (2018)]. Our calculations clarify the field-dependent signatures of the Kondo effect in the thermopower of Kondo-correlated quantum dots and explain the recently measured trends in the $B$-field dependence of the thermoelectric response of such systems [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018)].
65 - T. A. Costi 2019
Signatures of the Kondo effect in the electrical conductance of strongly correlated quantum dots are well understood both experimentally and theoretically, while those in the thermopower have been the subject of recent interest. Here, we extend theor etical work [T. A. Costi, Phys. Rev. B {bf 100}, 161106(R) (2019)] on the field-dependent thermopower of such systems, and carry out calculations in order to address a recent experiment on the field dependent thermoelectric response of Kondo-correlated quantum dots [A. Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018)]. In addition to the sign changes in the thermopower at temperatures $T_1(B)$ and $T_2(B)$ (present also for $B=0$) in the Kondo regime, an additional sign change was found [T. A. Costi, Phys. Rev. B {bf 100}, 161106(R) (2019)] at a temperature $T_0(B)<T_1(B)<T_2(B)$ for fields exceeding a gate-voltage dependent value $B_0$, where $B_0$ is comparable to, but larger, than the field $B_c$ at which the Kondo resonance splits. We describe the evolution of the Kondo-induced sign changes in the thermopower at temperatures $T_0(B),T_1(B)$ and $T_2(B)$ with magnetic field and gate voltage from the Kondo regime to the mixed valence and empty orbital regimes. By carrying out detailed NRG calculations for the above quantities we address the recent experiment by A. Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018), which measures the field-dependent thermoelectric response of InAs quantum dots exhibiting the Kondo effect, finding good agreement for the overall trends in the measured field- and temperature-dependent thermoelectric response as a function of gate voltage.
261 - Enrique Mu~noz , C. J. Bolech , 2013
A recent comment on our work (Phys. Rev. Lett., vol. 110, 016601 (2013)) by A.A.Aligia claims that we made mistakes in the evaluation of the lesser quantities. It is further claimed that the distribution function of the single-particle selfenergy of the interacting region in the Fermi liquid regime, e.g. at small bias voltage, low temperature, and small frequency, is continuous. These claims are based on a comparison of the particle-hole symmetric case with results obtained from the approach of A.A.Aligia. We disagree with these claims and show that the discrepancies that the comment alludes to originate from a violation of Ward identities by the method employed in the comment. A comparison of our approach with the numerical renormalization group shows perfect agreement for the symmetric case.
Stable organic radicals integrated into molecular junctions represent a practical realization of the single-orbital Anderson impurity model. Motivated by recent experiments for perchlorotriphenylmethyl (PTM) molecules contacted to gold electrodes, we develop a method that combines density functional theory (DFT), quantum transport theory, numerical renormalization group (NRG) calculations and renormalized super-perturbation theory (rSPT) to compute both equilibrium and non-equilibrium properties of strongly correlated nanoscale systems at low temperatures effectively from first principles. We determine the possible atomic structures of the interfaces between the molecule and the electrodes, which allow us to estimate the Kondo temperature and the characteristic transport properties, which compare well with experiments. By using the non-equilibrium rSPT results we assess the range of validity of equilibrium DFT+NRG-based transmission calculations for the evaluation of the finite voltage conductance. The results demonstrate that our method can provide qualitative insights into the properties of molecular junctions when the molecule-metal contacts are amorphous or generally ill-defined, and that it can further give a fully quantitative description when the experimental contact structures are well characterized.
117 - F. Reinert 2001
We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly-correlated Ce system CeCu$_2$Si$_2$. Exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature depend ence of the low-energy 4f spectral features, whose major weight lies above the Fermi level $E_F$. We also present theoretical predictions based on the single-impurity Anderson model using an extended non-crossing approximation (NCA), including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu$_2$Si$_2$ can be described by single-impurity Kondo physics down to $T approx 5$ K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا