Do you want to publish a course? Click here

Roads Extraction from Satellite Images using Convolution Neural Network Model (Deeplabv3+) A Case Study in Lattakia city

استخراج الطرق من صور الأقمار الصناعية باستخدام نموذج الشبكة العصبونية الالتفافية (+Deeplabv3): حالة دراسية في مدينة اللاذقية

815   3   0   0.0 ( 0 )
 Publication date 2023
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The purpose of this paper is to extract roads from satellite images, based on developing the performance of the deep convolutional neural network model (Deeplabv3+) for roads segmentation, and to evaluate and test the performance of this model after training on our data.This experimental study was applied at Google Colab cloud platform, by software instructions and advanced libraries in the Python.We conducted data pre -processing to prepare ground truth masks,then we trained the model.The training and validation process required (Epochs=4), by(Patch Size=4images).The Loss function decreased to its minimum value (0.025). Training time was three hours and ten minutes, aided by the advanced Graphics Processing Unit (GPU) and additional RAM.We achieved good results in evaluating the accuracy of the predictions of the trained model (IoU = 0.953). It was tested on two different areas, one of which is residential and the other agricultural in Lattakia city. The results showed that the trained model (DeepLabv3+) in our research can extract the road network accurately and effectively.But its performance is poor in some areas which includes tree shadows on the edges of the road, and where the spectral characteristics are similar to the road, such as the roofs of some buildings, and it is invalid for extracting side and unpaved roads. The research presented several recommendations to improve the performance of the (Deeplabv3+) in extracting roads from high-resolution satellite images, which is useful for updating road maps and urban planning works.


Questions and answers related to the research, Suggested by ChatGPT

  1. ما هو هدف هذه الدراسة؟

    هدف هذه الدراسة هو استخراج الطرق من صور الأقمار الصناعية باستخدام نموذج الشبكة العصبية التكرارية العميقة (Deeplabv3+) وتقييم أداء هذا النموذج بعد التدريب على البيانات المستخدمة في الدراسة.

  2. ما هي النتائج الرئيسية للدراسة؟

    أظهرت النتائج أن النموذج المدرب (DeepLabv3+) يمكنه استخراج شبكة الطرق بدقة وفعالية، ولكن أدائه ضعيف في بعض المناطق مثل ظلال الأشجار على حواف الطريق والأماكن التي تتشابه فيها الخصائص الطيفية مع الطريق، مثل أسطح بعض المباني، ولا يمكن استخراج الطرق الجانبية والغير معبدة.

  3. ما هي التوصيات المقدمة في الدراسة؟

    قدمت الدراسة عدة توصيات لتحسين أداء النموذج (Deeplabv3+) في استخراج الطرق من صور الأقمار الصناعية عالية الدقة، والتي تكون مفيدة في تحديث خرائط الطرق وأعمال التخطيط الحضري.

  4. ما هي المناطق التي يعاني فيها النموذج من أداء ضعيف؟

    يعاني النموذج من أداء ضعيف في المناطق التي تحتوي على ظلال الأشجار على حواف الطريق والأماكن التي تتشابه فيها الخصائص الطيفية مع الطريق، مثل أسطح بعض المباني، ولا يمكن استخراج الطرق الجانبية والغير معبدة.

  5. ما هو الموضوع المشابه الذي يتصدر الأبحاث الحالية؟

    موضوع مشابه يتصدر الأبحاث الحالية هو استخراج الطرق من صور الأقمار الصناعية باستخدام تقنيات الشبكات العصبية العميقة وتحسين أداء هذه التقنيات في استخراج الطرق بدقة وفعالية.

References used
The purpose of this paper is to extract roads from satellite images, based on developing the performance of the deep convolutional neural network model (Deeplabv3+) forroads segmentation, and to evaluate and test the performance of this model after training on our data.This experimental study was applied atGoogle Colab cloud platform, by software instructions and advanced libraries in the Python.We conducted data pre -processing to prepare ground truth masks,thenwe trained the model.Thetraining and validation process required (Epochs=4), by(Patch Size=4images).The Loss function decreased to its minimum value (0.025). Training time was three hours and ten minutes, aided by the advanced Graphics Processing Unit (GPU) and additional RAM.We achieved good results in evaluating the accuracy of the predictions of the trained model (IoU = 0.953). It was tested on two different areas, one of which is residential and the other agricultural in Lattakia city. The results showed that the trained model (DeepLabv3+) in our research can extract the road network accurately and effectively.But its performance is poor in some areas which includes tree shadows on the edges of the road, and where the spectral characteristics are similar to the road, such as the roofs of some buildings, and it is invalid for extracting side and unpaved roads. The research presented several recommendations to improve the performance of the (Deeplabv3+) in extracting roads from high-resolution satellite images, which is useful for updating road maps and urban planning works.
Christopher, S.;Christopher, H. DeepLearningNeuralNetworks forLandUse LandCoverMapping. IGARSS -IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 2995–2990
A Beginner’s Guide to Segmentation in Satellite Images: Walking through Machine Learning Techniques for Image Segmentation and Applying Them to Satellite Imagery. https://www.gsitechnology.com/Beginners-Guide-to-Segmentation-in-Satellite-Images(Accessed95-92-2022)
Chen, L.; Qianli, Z.; Papandreou, G.; Schroff, F.; Adam,H.Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, Computer Vision –ECCV, 2018, pp 833–851
Darwishe, D.; Mohammad, A.; Chaaban, F. Developing a Model of Deep Learning by ANNs for Urban Areas Extraction from Remote Sensing Images -Study Area: HomsTartous, Al-Baath University Journal, V. 43, NO. 7, 2021, PP.11-42
rate research

Read More

This research work presents fuzzy pitch controller design of wind turbine to get the maximum power in addition to decrease the losses caused by acceleration and deceleration in turbine rotation. And thus optimize power coefficient of turbine throug h artificial intelligence and in particular fuzzy logic, because the fuzzy controller doesn’t need a complex mathematical pattern of the controlled system. A fuzzy controller is designed and compared with conventional controller for the same purpose in a wind turbine system described by its transfer function and membership function has been chosen for error and accumulation errors signals by using MATLAB. Results have been compared and showed better response by using the fuzzy controller.
Part of a 2017 Master’s Degree in Web Science research, which includes the definition of marketing intelligence in an expanded theoretical study, the method of building an Internet-based system as a data source, processing methodology, and applied results.
تقرير صادر عن اليونسكو عن دور الذكاء الاصطناعي في الادماج والتعليم يناقش الحاجة إلى مسارات تحويلية لتذليل العقبات المتعددة لاستثمار الذكاء الاصطناعي في قطاع التعليم
المسؤولية الجنائية للذكاء الاصطناعي تتمثل أهمية هذه الدراسة في أهمية موضوعها الجديد والحيوي، وهو المسؤولية الجنائية الناتجة عن أخطاء الذكاء الاصطناعي في التشريع الإماراتي "دراسة مقارنة"، فعلى امتداد الخمسين سنة الماضية تضافرت الجهود العالمية في عدد من الميادين، كالفلسفة والقانون وعلم النفس وعلم المنطق والرياضيات، وعلم الأحياء وغيرها من العلوم، ومنذ سنوات بدأت هذه الجهود تحصد من ثمارها وظهرت إلى الوجود تطبيقات مذهلة للذكاء الاصطناعي، وهذا ما دفع دولة الإمارات العربية المتحدة لاستحداث وزارة للذكاء الاصطناعي وعلوم المستقبل، فهذه الخطوة تُضاف إلى سجل الإمارات الحافل بكل ما هو جديد في الثقافة والعلوم وغيرها من المجالات، فالإمارات سبّاقة في البحث وجلب أي أفكار جديدة أو عالمية وتطبيقها، والهدف من ذلك هو الارتقاء بالعمل الإداري. لأن اعتماد الإدارة على الذكاء الاصطناعي يساعدها على التكيف مع التغيرات المتلاحقة، ويساعدها أيضاً على مواجهة التحديات المتعددة والمختلفة، وبالتالي تحقيق الميزة التنافسية التي تسعى الإدارة إلى تحقيقها.
In recent years, the problem of classifying objects in images has increased by using deep learning as a result of the industrial sector requirements. Despite of many algorithms used in this field, such as Deep Learning Neural Network DNN and Convolut ional Neural Network CNN, the proposed systems to address this problem Lack of comprehensive solution to the difficulties of long training time and floating memory during the training process, low rating classification. Convolutional Neural Networks (CNNs), which are the most used algorithms for this task, were a mathematical pattern for analyzing images data. A new deep-traversal network pattern was proposed to solve the above problems. The aim of the research is to demonstrate the performance of the recognition system using CNNs networks on the available memory and training time by adapting appropriate variables for the bypass network. The database used in this research is CIFAR10, which consists of 60000 colorful images belonging to ten categories, as every 6,000 images are for a class of these items. Where there are 50,000 training images and 10,000 test tubes. When tested on a sample of selected images from the CIFAR10 database, the model achieved a rating classification of 98.87%.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا