Do you want to publish a course? Click here

Predicting of Traffic Accident in Lattakia City Using Artificial Neural Networks

التنبؤ بالحوادث المرورية في مدينة اللاذقية باستخدام الشبكات العصبونية الصنعية

689   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This study constitutes a preliminary step to develop a mathematical model for predicting traffic accidents in the city of Lattakia, based on a number of external factors, which include engineering characteristics, traffic incursions, and traffic accident data. As for its main goal, it is to reduce the number of traffic accidents expected in the future on the main streets in the city, as the study was conducted on various arterial streets in them in terms of their importance and in terms of the number of traffic accidents recorded on them, and in terms of the diversity of their engineering characteristics, in order to have sufficient familiarity with the traffic conditions in The city for various reasons, does not depend on the human behavior of the drivers or on the characteristics of the vehicle. A statistical analysis of traffic accident data for the years 2014, 2015, 2016 and 2017 was conducted on urban streets in Lattakia, where accidents were classified according to their severity, time of occurrence and place of their occurrence, and the necessary data were collected and digitized within a software environment in Microsoft Excel, and then a model was built Predicting the use of the artificial neural networks tool in the MATLAB program, in which data for 319 traffic accidents that were recorded in the years 2015, 2016 and 2017, were entered, which were divided into three groups (training, validation and testing). The structural neural network (10-10-1) gave high values ​​of the correlation coefficient, as the total R value during the three stages was 0.931236, which is very close to one, and therefore the designed network is ideal and achieves the response to predict traffic accidents monthly with very high accuracy.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة تطوير نموذج رياضي للتنبؤ بالحوادث المرورية في مدينة اللاذقية باستخدام الشبكات العصبونية الصنعية. تعتمد الدراسة على تحليل بيانات الحوادث المرورية للأعوام 2014-2017، وتصنيفها حسب خطورتها وزمن ومكان وقوعها. تم جمع البيانات ورقمنتها باستخدام برنامج Microsoft Excel، وبناء النموذج باستخدام أداة الشبكات العصبونية الصنعية في برنامج MATLAB. تم إدخال بيانات 319 حادثاً مرورياً مقسمة إلى ثلاث مجموعات (التدريب، التحقق، والاختبار). أظهرت النتائج أن الشبكة العصبونية ذات الهيكلية (1-10-10) حققت معامل ارتباط عالي بلغ 0.931236، مما يشير إلى دقة عالية في التنبؤ بالحوادث المرورية شهرياً. تهدف الدراسة إلى تحسين وضبط سلامة المرور في المدينة من خلال الكشف عن الطرق الخطرة في أوقات محددة.
Critical review
تعد الدراسة خطوة مهمة نحو تحسين السلامة المرورية في مدينة اللاذقية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن توسيع نطاق الدراسة ليشمل فترات زمنية أطول ومناطق جغرافية أوسع للحصول على نتائج أكثر شمولية. ثانياً، يمكن إدخال المزيد من المتغيرات التي قد تؤثر على الحوادث المرورية مثل الظروف الجوية وسلوك السائقين. ثالثاً، يجب التأكد من تحديث البيانات بشكل دوري لضمان دقة النموذج على المدى الطويل. وأخيراً، يمكن مقارنة نتائج النموذج مع نماذج أخرى للتنبؤ بالحوادث المرورية للتحقق من فعاليته.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو تخفيض عدد الحوادث المرورية المتوقعة مستقبلاً على الشوارع الرئيسية في مدينة اللاذقية.

  2. ما هي البيانات التي تم استخدامها لبناء النموذج؟

    تم استخدام بيانات الحوادث المرورية للأعوام 2014-2017، والتي تشمل تفاصيل عن خطورة الحوادث وزمن ومكان وقوعها.

  3. ما هي الهيكلية التي حققت أفضل نتائج في التنبؤ بالحوادث المرورية؟

    الهيكلية التي حققت أفضل نتائج هي (1-10-10) حيث بلغ معامل الارتباط 0.931236.

  4. ما هي التوصيات التي قدمتها الدراسة لتحسين السلامة المرورية في المستقبل؟

    التوصيات تشمل استخدام نماذج عصبونية صنعية أخرى، إدخال بيانات مستقبلية جديدة، تطوير منهجية إعداد تقارير الحوادث المرورية، واستخدام برامج الذكاء الصنعي في هندسة المرور.


References used
WHO-World Health Organization, 2010.
BERHANU, G. Models relating traffic safety with road environment and traffic flows on arterial roads in Addis Ababa. Accident Analysis & Prevention36, 2004, 697-704
AKGÜNGÖR AP, DOĞAN E. An application of modified Smeed, adapted Andreassen and artificial neural network accident models to three metropolitan cities of Turkey.Scientific Research and Essays. 2009 Oct;4(9):906-913
rate research

Read More

In this research, We present a scientific advanced developed study and keeping up with new studies and technologies of very short-term electrical load forecasting and applying this study for electrical load forecasting of basic Syrian electrical p ower system by studying this prediction for next four hours according to the criterion applied in the Syrian Electricity Ministry with ten minutes intervals ,we call it "Instant electrical load forecasting".
In this research, artificial neural networks, one of the most common branches of artificial intelligence, were used to evaluate the diameter of the cotton yarn. The necessary data were collected and practical tests were carried out. Then, an algori thm for the artificial neural network was established, which provides the possibility of determining the yarn diameter from the input variables, represented by the count and twist yarn. Where after the creation of many networks, one was selected which gave the lowest error rate.
This paper presents a new technique based on artificial neural networks (ANNs) to correct power factor. A synchronous motor controlled by the neural controller was used to handle the problem of reactive power compensation of the system, in order to correct power factor. In this paper, the electrical system and the neural controller were simulated using MATLAB. The results have shown that the presented technique overcomes the problems in conventional compensators (using static capacitors) such as time delay and step changes of reactive power besides to the fast compensation compared to the technique with capacitors groups.
A reliable and continuous supply of electrical energy is necessary for the functioning of today’s complex society. Because of the increasing consumption and the extension of existing electrical transmission networks and these power systems are oper ated closer and closer to their limits accordingly the possibilities of overloading, equipment failures and blackout are also increasing, furthermore, we have an additional obstacle which is that electrical energy cannot be stored efficiently, so, electrical energy should be generated only when it's needed. Due to the fact that world is facing a lack of oil reserves and the difficulties related to have alternative sources to generate electrical power, then, electrical load forecasting is considered as a crucial factor in electrical power system either from economical or technical point of view on both planning and operating levels. This research introduces a short term electrical load forecasting system by using artificial neural networks with a simulation in Matlab environment in addition to an interface for the system and all that is depending on previous load data and weather parameters in Tartous province.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا