في هذا البحث تم استخدام الشبكات العصبونيّة الصنعيّة التي تعتبر من أكثر فروع الذكاء الصناعي التي تخدم
عمليات التخمين لإيجاد قطر الغزول القطنيّة المسرحة. تّم جمع البيانات اللازمة وٕ اجراء الاختبارات العملية. ثم تّم العمل على تأسيس خوارزمية برمجية للشبكة العصبونية الصنعية، و التي توفر إمكانية تحديد قطر الغزل القطني المسرح انطلاقاً من المتغيرات المدخلة، و المتمثلة بنمرة الغزل و عدد برماته. حيث أنه بعد إنشاء العديد من الشبكات العصبونية، تّم اختيار الشبكة الأنسب، و التي أعطت أقل نسبة خطأ.
In this research, artificial neural networks, one of the most common branches of artificial
intelligence, were used to evaluate the diameter of the cotton yarn. The necessary data
were collected and practical tests were carried out. Then, an algorithm for the artificial
neural network was established, which provides the possibility of determining the yarn
diameter from the input variables, represented by the count and twist yarn. Where after
the creation of many networks, one was selected which gave the lowest error rate.
Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية استخدام الشبكات العصبونية الصنعية لتحديد قطر الغزول القطنية المسرحة. يعتبر قطر الغزل من العوامل المهمة التي تعكس جودة الغزل وتؤثر على خصائص الأقمشة الناتجة. تم جمع البيانات اللازمة وإجراء الاختبارات العملية، ثم تم تطوير خوارزمية برمجية للشبكة العصبونية الصنعية لتحديد قطر الغزل بناءً على المتغيرات المدخلة مثل نمرة الغزل وعدد البرمات. بعد إنشاء العديد من الشبكات، تم اختيار الشبكة الأنسب التي أعطت أقل نسبة خطأ. في المرحلة الأخيرة، تم اختبار الشبكة على عينات جديدة ومقارنة النتائج مع النتائج التجريبية المخبرية والعلاقات النظرية، حيث أظهرت الشبكة العصبونية دقة أعلى. كما تم إنشاء واجهة رسومية لتسهيل التعامل مع الشبكة.
Critical review
دراسة نقدية: يعتبر البحث خطوة مهمة في استخدام تقنيات الذكاء الصناعي في مجال الغزل والنسيج، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن زيادة حجم العينة المستخدمة في التدريب لتحسين دقة الشبكة وتقليل نسبة الخطأ. ثانياً، يمكن دراسة تأثير عوامل أخرى مثل نوع الألياف المستخدمة وظروف الإنتاج على دقة النتائج. ثالثاً، يمكن تحسين الواجهة الرسومية لتكون أكثر تفاعلية وسهولة في الاستخدام. وأخيراً، يمكن توسيع نطاق البحث ليشمل أنواع أخرى من الغزول والأقمشة لتحسين شمولية النتائج.
Questions related to the research
-
ما هي أهمية تحديد قطر الغزل في صناعة النسيج؟
تحديد قطر الغزل مهم لأنه يعكس جودة الغزل ويؤثر على خصائص الأقمشة الناتجة مثل العرض، عامل التغطية، المسامية، والراحة.
-
ما هي المتغيرات المدخلة التي استخدمت في تدريب الشبكة العصبونية الصنعية؟
المتغيرات المدخلة هي نمرة الغزل وعدد البرمات.
-
كيف تم اختبار دقة الشبكة العصبونية الصنعية؟
تم اختبار دقة الشبكة على عينات جديدة لم تُدرب عليها سابقاً، وتمت مقارنة النتائج مع النتائج التجريبية المخبرية والعلاقات النظرية.
-
ما هي الفوائد المحتملة لاستخدام الشبكات العصبونية الصنعية في تحديد قطر الغزل؟
الفوائد تشمل دقة أعلى في تحديد القطر، تقليل التكاليف والوقت، وتوفير نتائج صحيحة ودقيقة بسرعة.
References used
AHMAD. G, 2014 -The Application of Artificial Intelligence to Predict the Strength of Cotton Yarns. Master thesis –Damascus University, Syria, 116p
BASU. A, DORAISWAMY. I, GOTIPAMUL. R L, 2003 - Meaurement of Yarn Diameter and Twist by Image Analysis. The Journal of The Textile Institute, Vol 94, 47-58
CARVALHO. V, SOARES. F. O, 2008- A Comparative Study Between Yarn Diameter and Yarn Mass Variation Measurement System Using Capatitive And Optical Sensors. The Indian Journal of fiber& Textile Research, Vol 33, 119-125
Ring, Rotor(O.E) and Air vortex spinning systems provide yarns with different structures and
properties. Each system has its limitations and advantages in terms of technical feasibility and economic
viabilit y Ne 30, 100%cotton yarns were produced
This paper presents a new technique based on artificial neural networks (ANNs) to
correct power factor. A synchronous motor controlled by the neural controller was used to
handle the problem of reactive power compensation of the system, in order to
In this paper, we presented a scientific methodicalness in
very short term load forecasting depends on back propagation
artificial neural networks, and we relied upon real data of Syrian
electrical power system.
In this research, We present a scientific advanced developed
study and keeping up with new studies and technologies of very
short-term electrical load forecasting and applying this study for
electrical load forecasting of basic Syrian electrical p
the aim of this study is
determination of the most influential climatic factors in the rainfall
runoff relationship in Al-Kabir Al-shimalee river using artificial
neural networks. The inputs included Precipitation, runoff, in
different delays, in