Do you want to publish a course? Click here

Determination the Diameter of Cotton Ring-Spun Yarn Using Artificial Neural Networks

تحديد قطر الخيوط القطنية المسرّحة باستخدام الشبكات العصبونيّة الصنعيّة

1505   0   7   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this research, artificial neural networks, one of the most common branches of artificial intelligence, were used to evaluate the diameter of the cotton yarn. The necessary data were collected and practical tests were carried out. Then, an algorithm for the artificial neural network was established, which provides the possibility of determining the yarn diameter from the input variables, represented by the count and twist yarn. Where after the creation of many networks, one was selected which gave the lowest error rate.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية استخدام الشبكات العصبونية الصنعية لتحديد قطر الغزول القطنية المسرحة. يعتبر قطر الغزل من العوامل المهمة التي تعكس جودة الغزل وتؤثر على خصائص الأقمشة الناتجة. تم جمع البيانات اللازمة وإجراء الاختبارات العملية، ثم تم تطوير خوارزمية برمجية للشبكة العصبونية الصنعية لتحديد قطر الغزل بناءً على المتغيرات المدخلة مثل نمرة الغزل وعدد البرمات. بعد إنشاء العديد من الشبكات، تم اختيار الشبكة الأنسب التي أعطت أقل نسبة خطأ. في المرحلة الأخيرة، تم اختبار الشبكة على عينات جديدة ومقارنة النتائج مع النتائج التجريبية المخبرية والعلاقات النظرية، حيث أظهرت الشبكة العصبونية دقة أعلى. كما تم إنشاء واجهة رسومية لتسهيل التعامل مع الشبكة.
Critical review
دراسة نقدية: يعتبر البحث خطوة مهمة في استخدام تقنيات الذكاء الصناعي في مجال الغزل والنسيج، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن زيادة حجم العينة المستخدمة في التدريب لتحسين دقة الشبكة وتقليل نسبة الخطأ. ثانياً، يمكن دراسة تأثير عوامل أخرى مثل نوع الألياف المستخدمة وظروف الإنتاج على دقة النتائج. ثالثاً، يمكن تحسين الواجهة الرسومية لتكون أكثر تفاعلية وسهولة في الاستخدام. وأخيراً، يمكن توسيع نطاق البحث ليشمل أنواع أخرى من الغزول والأقمشة لتحسين شمولية النتائج.
Questions related to the research
  1. ما هي أهمية تحديد قطر الغزل في صناعة النسيج؟

    تحديد قطر الغزل مهم لأنه يعكس جودة الغزل ويؤثر على خصائص الأقمشة الناتجة مثل العرض، عامل التغطية، المسامية، والراحة.

  2. ما هي المتغيرات المدخلة التي استخدمت في تدريب الشبكة العصبونية الصنعية؟

    المتغيرات المدخلة هي نمرة الغزل وعدد البرمات.

  3. كيف تم اختبار دقة الشبكة العصبونية الصنعية؟

    تم اختبار دقة الشبكة على عينات جديدة لم تُدرب عليها سابقاً، وتمت مقارنة النتائج مع النتائج التجريبية المخبرية والعلاقات النظرية.

  4. ما هي الفوائد المحتملة لاستخدام الشبكات العصبونية الصنعية في تحديد قطر الغزل؟

    الفوائد تشمل دقة أعلى في تحديد القطر، تقليل التكاليف والوقت، وتوفير نتائج صحيحة ودقيقة بسرعة.


References used
AHMAD. G, 2014 -The Application of Artificial Intelligence to Predict the Strength of Cotton Yarns. Master thesis –Damascus University, Syria, 116p
BASU. A, DORAISWAMY. I, GOTIPAMUL. R L, 2003 - Meaurement of Yarn Diameter and Twist by Image Analysis. The Journal of The Textile Institute, Vol 94, 47-58
CARVALHO. V, SOARES. F. O, 2008- A Comparative Study Between Yarn Diameter and Yarn Mass Variation Measurement System Using Capatitive And Optical Sensors. The Indian Journal of fiber& Textile Research, Vol 33, 119-125
rate research

Read More

Ring, Rotor(O.E) and Air vortex spinning systems provide yarns with different structures and properties. Each system has its limitations and advantages in terms of technical feasibility and economic viabilit y Ne 30, 100%cotton yarns were produced from the above systems and knitted in single jersey machine .The Rotor Spun yarns found with frequent breakage during knitting.
This paper presents a new technique based on artificial neural networks (ANNs) to correct power factor. A synchronous motor controlled by the neural controller was used to handle the problem of reactive power compensation of the system, in order to correct power factor. In this paper, the electrical system and the neural controller were simulated using MATLAB. The results have shown that the presented technique overcomes the problems in conventional compensators (using static capacitors) such as time delay and step changes of reactive power besides to the fast compensation compared to the technique with capacitors groups.
In this research, We present a scientific advanced developed study and keeping up with new studies and technologies of very short-term electrical load forecasting and applying this study for electrical load forecasting of basic Syrian electrical p ower system by studying this prediction for next four hours according to the criterion applied in the Syrian Electricity Ministry with ten minutes intervals ,we call it "Instant electrical load forecasting".
the aim of this study is determination of the most influential climatic factors in the rainfall runoff relationship in Al-Kabir Al-shimalee river using artificial neural networks. The inputs included Precipitation, runoff, in different delays, in addition on لاclimate factor in each network, to determinate the best model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا