Do you want to publish a course? Click here

The self-conviction of the criminal judge

الاقتناع الذاتي للقاضي الجنائي

970   1   3   0.0 ( 0 )
 Publication date 2020
  fields Low Sciences
and research's language is العربية
 Created by د. أحمد إبراهيم




Ask ChatGPT about the research

Abstract: This research, which we have in hand, examines the main general principle in criminal evidence, which is the principle of self-conviction of the criminal judge, and through this principle, we will discuss the nature of the principle of self-conviction in terms of its definition, explanation of its justifications and related provisions and scope of this principle, then exposure to restrictions And the exceptions to this principle, and then we show the practical application of this principle to the evidence of evidence in the criminal case, namely confession, testimony, experience, clues, and written evidence, using the opinion of jurisprudence, judiciary and comparative legislation, and then in the end we put a conclusion in which a summary of the research in addition to a set of results And recommendations desired Keywords: Self-conviction || Criminal judge || The conviction of the criminal judge


Artificial intelligence review:
Research summary
تتناول هذه الدراسة مبدأ الاقتناع الذاتي للقاضي الجنائي، وهو مبدأ أساسي في الإثبات الجنائي. يستعرض البحث تعريف هذا المبدأ وأسبابه والأحكام المتعلقة به، بالإضافة إلى نطاق تطبيقه. كما يناقش القيود والاستثناءات التي قد ترد على هذا المبدأ. يتم تحليل التطبيق العملي لهذا المبدأ على أدلة الإثبات في الدعوى الجنائية مثل الاعتراف والشهادة والخبرة والقرائن والدليل الكتابي، مع الاستعانة بآراء الفقه والقضاء والتشريعات المقارنة. يخلص البحث إلى مجموعة من النتائج والتوصيات التي تهدف إلى تحسين تطبيق هذا المبدأ وضمان العدالة في الأحكام الجنائية.
Critical review
دراسة نقدية: على الرغم من أهمية موضوع البحث وتناوله لمبدأ حيوي في الإثبات الجنائي، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، البحث يفتقر إلى تحليل نقدي عميق لبعض التشريعات المقارنة، مما قد يحد من فهم القارئ لتطبيقات المبدأ في سياقات مختلفة. ثانياً، كان من الممكن أن يتناول البحث المزيد من الدراسات العملية والحالات الواقعية لتوضيح كيفية تطبيق المبدأ في المحاكم. أخيراً، يفضل أن يتم تعزيز البحث بمزيد من المراجع الحديثة لتعزيز مصداقيته وتحديث المعلومات المقدمة.
Questions related to the research
  1. ما هو مبدأ الاقتناع الذاتي للقاضي الجنائي؟

    مبدأ الاقتناع الذاتي للقاضي الجنائي هو أن القاضي يحكم وفقًا للعقيدة التي تتكون لديه في الدعوى بكامل حريته، وله مطلق الحرية في تقدير قيمة الأدلة والأخذ بما يرتاح إليه ضميره ووجدانه.

  2. ما هي القيود التي ترد على مبدأ الاقتناع الذاتي للقاضي الجنائي؟

    من القيود التي ترد على مبدأ الاقتناع الذاتي للقاضي الجنائي: الالتزام بطرق الإثبات الخاصة في المسائل غير الجنائية، ضرورة أن يكون الدليل له أصل في ملف الدعوى وتناقش به الخصوم بشكل علني، وأن يكون الاقتناع منطقيًا ويسلم به العقل، وأن يكون الاقتناع يقينيًا.

  3. ما هي الاستثناءات التي ترد على مبدأ الاقتناع الذاتي للقاضي الجنائي؟

    من الاستثناءات التي ترد على مبدأ الاقتناع الذاتي للقاضي الجنائي: القرائن القانونية القاطعة التي لا تقبل إثبات العكس، والنص الصريح على الالتزام بأدلة محددة لإثبات الجريمة.

  4. كيف يتم تطبيق مبدأ الاقتناع الذاتي على أدلة الإثبات في الدعوى الجنائية؟

    يتم تطبيق مبدأ الاقتناع الذاتي على أدلة الإثبات في الدعوى الجنائية من خلال تقييم القاضي للأدلة مثل الاعتراف والشهادة والخبرة والقرائن والدليل الكتابي، بحيث يأخذ بما يرتاح إليه ضميره ويطرح ما لا يطمئن إليه، مع الالتزام بالقيود والاستثناءات القانونية.


References used
قانون الإجراءات الجنائية المصري رقم 150 لعام 1950م.
rate research

Read More

There is no doubt that the advanced scientific developments that have emerged on the scene in the modern era have led to radical changes in the methods of criminal evidence that were not known before, based on scientific theories. The results of s cientific research and its uses in the field of criminal investigation played a major role in proving the crime and its relation to the perpetrator, Therefore, in order to achieve the best results, it was necessary to organize a specialized body to obtain scientific evidence.
Information extraction and question answering have the potential to introduce a new paradigm for how machine learning is applied to criminal law. Existing approaches generally use tabular data for predictive metrics. An alternative approach is needed for matters of equitable justice, where individuals are judged on a case-by-case basis, in a process involving verbal or written discussion and interpretation of case factors. Such discussions are individualized, but they nonetheless rely on underlying facts. Information extraction can play an important role in surfacing these facts, which are still important to understand. We analyze unsupervised, weakly supervised, and pre-trained models' ability to extract such factual information from the free-form dialogue of California parole hearings. With a few exceptions, most F1 scores are below 0.85. We use this opportunity to highlight some opportunities for further research for information extraction and question answering. We encourage new developments in NLP to enable analysis and review of legal cases to be done in a post-hoc, not predictive, manner.
State-of-the-art deep neural networks require large-scale labeled training data that is often expensive to obtain or not available for many tasks. Weak supervision in the form of domain-specific rules has been shown to be useful in such settings to a utomatically generate weakly labeled training data. However, learning with weak rules is challenging due to their inherent heuristic and noisy nature. An additional challenge is rule coverage and overlap, where prior work on weak supervision only considers instances that are covered by weak rules, thus leaving valuable unlabeled data behind. In this work, we develop a weak supervision framework (ASTRA) that leverages all the available data for a given task. To this end, we leverage task-specific unlabeled data through self-training with a model (student) that considers contextualized representations and predicts pseudo-labels for instances that may not be covered by weak rules. We further develop a rule attention network (teacher) that learns how to aggregate student pseudo-labels with weak rule labels, conditioned on their fidelity and the underlying context of an instance. Finally, we construct a semi-supervised learning objective for end-to-end training with unlabeled data, domain-specific rules, and a small amount of labeled data. Extensive experiments on six benchmark datasets for text classification demonstrate the effectiveness of our approach with significant improvements over state-of-the-art baselines.
Multi-party dialogue machine reading comprehension (MRC) brings tremendous challenge since it involves multiple speakers at one dialogue, resulting in intricate speaker information flows and noisy dialogue contexts. To alleviate such difficulties, pr evious models focus on how to incorporate these information using complex graph-based modules and additional manually labeled data, which is usually rare in real scenarios. In this paper, we design two labour-free self- and pseudo-self-supervised prediction tasks on speaker and key-utterance to implicitly model the speaker information flows, and capture salient clues in a long dialogue. Experimental results on two benchmark datasets have justified the effectiveness of our method over competitive baselines and current state-of-the-art models.
Abstract Text classification is a widely studied problem and has broad applications. In many real-world problems, the number of texts for training classification models is limited, which renders these models prone to overfitting. To address this prob lem, we propose SSL-Reg, a data-dependent regularization approach based on self-supervised learning (SSL). SSL (Devlin et al., 2019a) is an unsupervised learning approach that defines auxiliary tasks on input data without using any human-provided labels and learns data representations by solving these auxiliary tasks. In SSL-Reg, a supervised classification task and an unsupervised SSL task are performed simultaneously. The SSL task is unsupervised, which is defined purely on input texts without using any human- provided labels. Training a model using an SSL task can prevent the model from being overfitted to a limited number of class labels in the classification task. Experiments on 17 text classification datasets demonstrate the effectiveness of our proposed method. Code is available at https://github.com/UCSD-AI4H/SSReg.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا