Do you want to publish a course? Click here

استخلاص السمات الأمثلية من الصور الشعاعية X-Ray لتشخيص الاصابة بمرض covid-19

838   1   0   0.0 ( 0 )
 Publication date 2020
and research's language is العربية
 Created by م. رفيف الشاوي




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
تقدم هذه الورقة البحثية دراسة حول استخدام تقنيات التعلم العميق لاستخلاص السمات الأمثلية من الصور الشعاعية X-Ray لتشخيص الإصابة بمرض Covid-19. يتم التركيز على بناء نماذج تعتمد على الشبكات العصبية الالتفافية (CNN) لتحليل الصور الشعاعية واستخلاص السمات التي تساعد في تصنيف الحالات إلى مصابة أو غير مصابة. تتناول الورقة عدة دراسات سابقة استخدمت تقنيات مختلفة مثل ResNet50 وXception وVGG19 وغيرها، وتستعرض نتائجها ودقتها في التشخيص. تهدف الدراسة إلى تحسين دقة التشخيص وسرعته للمساهمة في الحد من انتشار المرض من خلال اتخاذ الإجراءات اللازمة مع الأشخاص المصابين وعزلهم عن الآخرين. يتم استخدام مجموعة بيانات تتكون من صور شعاعية للصدر، ويتم تدريب النماذج المختلفة عليها لاستخلاص السمات وتصنيف الحالات. تتضمن الورقة أيضًا شرحًا لمفاهيم التعلم العميق والشبكات العصبية الالتفافية والعمليات الأساسية فيها مثل الالتفاف، التجميع، والتصنيف، بالإضافة إلى مقاييس الأداء المستخدمة لتقييم دقة النماذج.
Critical review
تعتبر هذه الدراسة خطوة مهمة نحو تحسين دقة وسرعة تشخيص مرض Covid-19 باستخدام تقنيات التعلم العميق. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن توسيع مجموعة البيانات المستخدمة لتشمل المزيد من الصور من مصادر مختلفة لزيادة تنوع البيانات وتحسين دقة النموذج. ثانيًا، يمكن استكشاف تقنيات أخرى مثل التعلم بالنقل (Transfer Learning) بشكل أعمق لتحسين أداء النماذج. ثالثًا، يمكن التركيز على تقليل التحيز في البيانات المستخدمة لضمان أن النموذج يعمل بشكل جيد على جميع الفئات السكانية. وأخيرًا، يمكن تحسين توثيق الدراسة لتوضيح الخطوات المتبعة بشكل أكثر تفصيلًا، مما يسهل على الباحثين الآخرين تكرار التجارب والبناء عليها.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو إيجاد الحلول التقنية المثلى باستخدام التعلم العميق لبناء نموذج يساعد على استخلاص السمات الأمثلية من الصور الشعاعية لتشخيص الإصابة بمرض Covid-19 بسرعة ودقة.

  2. ما هي التقنيات المستخدمة في الدراسة لتحليل الصور الشعاعية؟

    تم استخدام تقنيات التعلم العميق والشبكات العصبية الالتفافية (CNN) لتحليل الصور الشعاعية واستخلاص السمات اللازمة لتصنيف الحالات إلى مصابة أو غير مصابة.

  3. ما هي مجموعة البيانات المستخدمة في الدراسة؟

    تم استخدام مجموعة بيانات تتكون من 1000 صورة شعاعية للصدر، منها 500 صورة لأشخاص مصابين بمرض Covid-19 و500 صورة لأشخاص غير مصابين.

  4. ما هي النتائج التي توصلت إليها الدراسة؟

    توصلت الدراسة إلى أن النماذج المقترحة تعمل بشكل جيد في تشخيص مرض Covid-19 من خلال الصور الشعاعية، حيث حققت دقة تصنيف عالية تصل إلى 98.62% في بعض النماذج.


References used
Arman Haghanifar, M ahdiyar Molahasani Majdabadi, YounheeChoi, S. Deivalakshmi, SeokbumKo," COVID-CXNET: DETECTING COVID-19 IN FRONTAL CHEST X-RAY IMAGES USING DEEP LEARNING"30 July 2020.
rate research

Read More

بات مرض كورونا من الأمراض التي تهدد حياتنا اليومية وذلك يعود إلى سرعة المرض الكبيرة وكانت الجهود كلها تصب في الحد من ذلك الانتشار الهائل للفيروس وذلك عن طريق التشخيص السريع للمرضى واتخاذ الاحتياطات اللازمة بعد ذلك. هذا فرض علينا البحث عن أساليب مجدي ة و سريعة لتشخيص المرض والحد من انتشاره والوصول إلى حلول تقنية مفيدة باستخدام التعلم العميق وذلك من خلال بناء نموذج يساعد على تصنيف الصور الشعاعية للمرضى هل هم أشخاص أصحاء أم مصابين وبالتالي القدرة على تشخيص المرض بشكل أسرع لقد استخدمنا نموذج قائم على التعلم العميق وهو شبكة عصبية تلافيفة لمساعدة أخصائي الأشعة على تشخيص وتحديد الإصابة أو نفيها تلقائيا من الصور الشعاعية وقد حقق النموذج دقة تصنيف مقدارها 96.46 في المئة
The COVID-19 pandemic has spawned a diverse body of scientific literature that is challenging to navigate, stimulating interest in automated tools to help find useful knowledge. We pursue the construction of a knowledge base (KB) of mechanisms---a fu ndamental concept across the sciences, which encompasses activities, functions and causal relations, ranging from cellular processes to economic impacts. We extract this information from the natural language of scientific papers by developing a broad, unified schema that strikes a balance between relevance and breadth. We annotate a dataset of mechanisms with our schema and train a model to extract mechanism relations from papers. Our experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature, outperforming the prominent PubMed search in a study with clinical experts. Our search engine, dataset and code are publicly available.
We propose semantic visualization as a linguistic visual analytic method. It can enable exploration and discovery over large datasets of complex networks by exploiting the semantics of the relations in them. This involves extracting information, appl ying parameter reduction operations, building hierarchical data representation and designing visualization. We also present the accompanying COVID-SemViz a searchable and interactive visualization system for knowledge exploration of COVID-19 data to demonstrate the application of our proposed method. In the user studies, users found that semantic visualization-powered COVID-SemViz is helpful in terms of finding relevant information and discovering unknown associations.
This research could be considered as a continuous study of luminescence spectrum of praseodymium cascade photon emission Pr3+ of 1% ions effect on Li2YB5O10 and LaF3 crystals. The Li2YB5O10 crystal shows many spectrum peaks, mainly of 272nm and 300nm wavelengths of luminescence decay τ=10.6 ns. The other crystal LaF3 shows two sharp spectrums of 478.6nm and 485.5nm wavelengths, which are due to the energetic transitions of 3P0→3H4 of luminescence decay τ=1.8 ns. This study proves that these two crystals exhibit good luminescence properties as promising compounds for laser and medical equipments to be used in radiation detectors and other research domains. The measurements were done in Tech-governmental University of Petersburg, Russia, 2008.
The study focused on the following problem: Is there an impact of the Corona pandemic on the tourist demand for accommodation facilities in Lattakia Governorate?. The study aimed at the following: To clarify the reality of the tourist demand for acco mmodation facilities before the Corona pandemic, in addition to determining the changes in the structure of the tourist demand in the accommodation facilities (hotels, chalets and furnished apartments, and visitors) during the period of the Corona pandemic in the Lattakia Governorate in 2020. A descriptive analytical approach was used.The study found a set of results, the most important of which are: The Corona pandemic affected the overall tourism demand for accommodation facilities in the Lattakia Governorate significantly in 2020 compared to 2019, There is an improvement in the overall tourism demand for accommodation facilities in the Lattakia Governorate in the three years before the pandemic. The pandemic affected the components of the Tourism Demand (hotels, furnished apartments, visitors) in Lattakia Governorate in 2020, The tourist demand for hotels was affected less than the Tourism demand for chalets, apartments, and visitors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا