نقترح التصور الدلالي كطريقة تحليلية بصرية لغوية.يمكنها تمكين الاستكشاف والاكتشاف على مجموعات البيانات الكبيرة للشبكات المعقدة من خلال استغلال دلالات العلاقات فيها.ينطوي ذلك على استخراج المعلومات، وتطبيق عمليات الحد من المعلمات، وبناء تمثيل البيانات الهرمية وتصميم التصور.نقدم أيضا نظام التصور القابل للبحث والتفاعل في Covid-Semviz المرافق للاستكشاف عن بيانات Covid-19 لإظهار تطبيق طريقةنا المقترحة.في دراسات المستخدمين، وجد المستخدمون أن CAVID-Semviz المدعوم بالتصور الدقيق مفيدة من حيث إيجاد المعلومات ذات الصلة واكتشاف جمعيات غير معروفة.
We propose semantic visualization as a linguistic visual analytic method. It can enable exploration and discovery over large datasets of complex networks by exploiting the semantics of the relations in them. This involves extracting information, applying parameter reduction operations, building hierarchical data representation and designing visualization. We also present the accompanying COVID-SemViz a searchable and interactive visualization system for knowledge exploration of COVID-19 data to demonstrate the application of our proposed method. In the user studies, users found that semantic visualization-powered COVID-SemViz is helpful in terms of finding relevant information and discovering unknown associations.
References used
https://aclanthology.org/
This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 5
To combat COVID-19, both clinicians and scientists need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive kno
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attrac
The COVID-19 pandemic has spawned a diverse body of scientific literature that is challenging to navigate, stimulating interest in automated tools to help find useful knowledge. We pursue the construction of a knowledge base (KB) of mechanisms---a fu
In this paper, we present ArCOV-19, an Arabic COVID-19 Twitter dataset that spans one year, covering the period from 27th of January 2020 till 31st of January 2021. ArCOV-19 is the first publicly-available Arabic Twitter dataset covering COVID-19 pan