تستكشف هذه الورقة متغيرا من أساليب جيلات العناوين التلقائية، حيث يلزم وجود عنوان تم إنشاؤه لتضمين عبارة معينة مثل الشركة أو اسم المنتج. الأساليب السابقة باستخدام النماذج القائمة على المحولات تولد عنوانا يتضمن عبارة معينة من خلال توفير التشفير مع معلومات إضافية مقابلة العبارة المحددة. ومع ذلك، لا يمكن أن تتضمن هذه الأساليب دائما العبارة في العنوان الذي تم إنشاؤه. مستوحاة من الأساليب السابقة القائمة على RNN توليد تسلسل رمزي في الاتجاهات الخلفية والأمام من العبارة المعينة، نقترح طريقة بسيطة قائمة على المحولات التي تضمن تضمين العبارة المحددة في العنوان الرفيع الناتج عن الجودة. ونحن ننظر أيضا في استراتيجية توليد عنوان جديدة تستفيد من ترتيب الجيل القابل للتحكم في المحولات. توضح تجاربنا مع Corpus الأخبار اليابانية أن أساليبنا، التي تضمن إدراج العبارة في العنوان الرئيسي، وتحقيق درجات Rouge مماثلة للأساليب السابقة القائمة على المحولات. نوضح أيضا أن استراتيجية توليدنا تؤدي أفضل من الاستراتيجيات السابقة.
This paper explores a variant of automatic headline generation methods, where a generated headline is required to include a given phrase such as a company or a product name. Previous methods using Transformer-based models generate a headline including a given phrase by providing the encoder with additional information corresponding to the given phrase. However, these methods cannot always include the phrase in the generated headline. Inspired by previous RNN-based methods generating token sequences in backward and forward directions from the given phrase, we propose a simple Transformer-based method that guarantees to include the given phrase in the high-quality generated headline. We also consider a new headline generation strategy that takes advantage of the controllable generation order of Transformer. Our experiments with the Japanese News Corpus demonstrate that our methods, which are guaranteed to include the phrase in the generated headline, achieve ROUGE scores comparable to previous Transformer-based methods. We also show that our generation strategy performs better than previous strategies.
References used
https://aclanthology.org/
Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at
We perform neural machine translation of sentence fragments in order to create large amounts of training data for English grammatical error correction. Our method aims at simulating mistakes made by second language learners, and produces a wider rang
Transformer has achieved great success in the NLP field by composing various advanced models like BERT and GPT. However, Transformer and its existing variants may not be optimal in capturing token distances because the position or distance embeddings
This paper describes the system of our team (NHK) for the WAT 2021 Japanese-English restricted machine translation task. In this task, the aim is to improve quality while maintaining consistent terminology for scientific paper translation. This task
Despite the recent advances in applying pre-trained language models to generate high-quality texts, generating long passages that maintain long-range coherence is yet challenging for these models. In this paper, we propose DiscoDVT, a discourse-aware