مستوحاة من تعلم المناهج الدراسية، نقترح إطار جيل التوليد على التوالي (I.E.، إلى نص إلى نص) حيث نقسم مشكلة جيل تقرير الأشعة في خطوتين.عكس ذلك لتوليد تقرير الأشعة الكاملة من الصورة في وقت واحد، يولد النموذج مفاهيم عالمية من الصورة في الخطوة الأولى ثم إصلاحها إلى نصوص أدق ومتماسكة باستخدام الهندسة المعمارية القائمة على المحولات.نحن نتبع نموذج التسلسل المستند إلى التسلسل المحول في كل خطوة.نحن نحسن على أحدث مجموعة من مجموعات البيانات القياسية.
Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at once, the model generates global concepts from the image in the first step and then reforms them into finer and coherent texts using transformer-based architecture. We follow the transformer-based sequence-to-sequence paradigm at each step. We improve upon the state-of-the-art on two benchmark datasets.
References used
https://aclanthology.org/
Our paper aims to automate the generation of medical reports from chest X-ray image inputs, a critical yet time-consuming task for radiologists. Existing medical report generation efforts emphasize producing human-readable reports, yet the generated
Transformer-based neural networks offer very good classification performance across a wide range of domains, but do not provide explanations of their predictions. While several explanation methods, including SHAP, address the problem of interpreting
Previous work indicates that discourse information benefits summarization. In this paper, we explore whether this synergy between discourse and summarization is bidirectional, by inferring document-level discourse trees from pre-trained neural summar
Reference-based automatic evaluation metrics are notoriously limited for NLG due to their inability to fully capture the range of possible outputs. We examine a referenceless alternative: evaluating the adequacy of English sentences generated from Ab
This paper presents a global summarization method for live sport commentaries for which we have a human-written summary available. This method is based on a neural generative summarizer. The amount of data available for training is limited compared t