Do you want to publish a course? Click here

DA-Transformer: Distance-aware Transformer

دا محول: محول عن بعد

200   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Transformer has achieved great success in the NLP field by composing various advanced models like BERT and GPT. However, Transformer and its existing variants may not be optimal in capturing token distances because the position or distance embeddings used by these methods usually cannot keep the precise information of real distances, which may not be beneficial for modeling the orders and relations of contexts. In this paper, we propose DA-Transformer, which is a distance-aware Transformer that can exploit the real distance. We propose to incorporate the real distances between tokens to re-scale the raw self-attention weights, which are computed by the relevance between attention query and key. Concretely, in different self-attention heads the relative distance between each pair of tokens is weighted by different learnable parameters, which control the different preferences on long- or short-term information of these heads. Since the raw weighted real distances may not be optimal for adjusting self-attention weights, we propose a learnable sigmoid function to map them into re-scaled coefficients that have proper ranges. We first clip the raw self-attention weights via the ReLU function to keep non-negativity and introduce sparsity, and then multiply them with the re-scaled coefficients to encode real distance information into self-attention. Extensive experiments on five benchmark datasets show that DA-Transformer can effectively improve the performance of many tasks and outperform the vanilla Transformer and its several variants.



References used
https://aclanthology.org/
rate research

Read More

Despite the recent advances in applying pre-trained language models to generate high-quality texts, generating long passages that maintain long-range coherence is yet challenging for these models. In this paper, we propose DiscoDVT, a discourse-aware discrete variational Transformer to tackle the incoherence issue. DiscoDVT learns a discrete variable sequence that summarizes the global structure of the text and then applies it to guide the generation process at each decoding step. To further embed discourse-aware information into the discrete latent representations, we introduce an auxiliary objective to model the discourse relations within the text. We conduct extensive experiments on two open story generation datasets and demonstrate that the latent codes learn meaningful correspondence to the discourse structures that guide the model to generate long texts with better long-range coherence.
The choice of parameter sharing strategy in multilingual machine translation models determines how optimally parameter space is used and hence, directly influences ultimate translation quality. Inspired by linguistic trees that show the degree of rel atedness between different languages, the new general approach to parameter sharing in multilingual machine translation was suggested recently. The main idea is to use these expert language hierarchies as a basis for multilingual architecture: the closer two languages are, the more parameters they share. In this work, we test this idea using the Transformer architecture and show that despite the success in previous work there are problems inherent to training such hierarchical models. We demonstrate that in case of carefully chosen training strategy the hierarchical architecture can outperform bilingual models and multilingual models with full parameter sharing.
Abstract Meaning Representation parsing is a sentence-to-graph prediction task where target nodes are not explicitly aligned to sentence tokens. However, since graph nodes are semantically based on one or more sentence tokens, implicit alignments can be derived. Transition-based parsers operate over the sentence from left to right, capturing this inductive bias via alignments at the cost of limited expressiveness. In this work, we propose a transition-based system that combines hard-attention over sentences with a target-side action pointer mechanism to decouple source tokens from node representations and address alignments. We model the transitions as well as the pointer mechanism through straightforward modifications within a single Transformer architecture. Parser state and graph structure information are efficiently encoded using attention heads. We show that our action-pointer approach leads to increased expressiveness and attains large gains (+1.6 points) against the best transition-based AMR parser in very similar conditions. While using no graph re-categorization, our single model yields the second best Smatch score on AMR 2.0 (81.8), which is further improved to 83.4 with silver data and ensemble decoding.
This paper explores a variant of automatic headline generation methods, where a generated headline is required to include a given phrase such as a company or a product name. Previous methods using Transformer-based models generate a headline includin g a given phrase by providing the encoder with additional information corresponding to the given phrase. However, these methods cannot always include the phrase in the generated headline. Inspired by previous RNN-based methods generating token sequences in backward and forward directions from the given phrase, we propose a simple Transformer-based method that guarantees to include the given phrase in the high-quality generated headline. We also consider a new headline generation strategy that takes advantage of the controllable generation order of Transformer. Our experiments with the Japanese News Corpus demonstrate that our methods, which are guaranteed to include the phrase in the generated headline, achieve ROUGE scores comparable to previous Transformer-based methods. We also show that our generation strategy performs better than previous strategies.
Transformer-based models such as BERT, XLNET, and XLM-R have achieved state-of-the-art performance across various NLP tasks including the identification of offensive language and hate speech, an important problem in social media. In this paper, we pr esent fBERT, a BERT model retrained on SOLID, the largest English offensive language identification corpus available with over 1.4 million offensive instances. We evaluate fBERT's performance on identifying offensive content on multiple English datasets and we test several thresholds for selecting instances from SOLID. The fBERT model will be made freely available to the community.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا