يصف استخراج المعلومات عبر اللغات الصفرية (IE) بناء نموذج IE لبعض اللغة المستهدفة، بالنظر إلى التعليقات التوضيحية القائمة حصريا في لغة أخرى، عادة باللغة الإنجليزية. في حين أن تقدم اللوائح المتعددة اللغات المحددة مسبقا يشير إلى تفاؤل سهلة للقطار على اللغة الإنجليزية، وتشغيل أي لغة ""، نجد من خلال استكشاف شامل وتمديد التقنيات التي تقودها مجموعة من الأساليب، الجديدة القديمة، إلى أداء أفضل من أي استراتيجية واحدة عبر اللغات على وجه الخصوص. نستكشف التقنيات بما في ذلك إسقاط البيانات والتدريب الذاتي، وكيف تأثير المشفرات المختلفة مسبقا تأثيرها. نستخدم English-to-businal IE مثلي الأولي، مما يدل على أداء قوي في هذا الإعداد لاستخراج الأحداث، والتعرف على الكيان المسمى، ووضع علامات جزء من الكلام، وتحليل التبعية. ثم قم بتطبيق إسقاط البيانات والتدريب الذاتي على ثلاثة مهام عبر ثمانية لغات مستهدفة. نظرا لعدم وجود مجموعة واحدة من التقنيات الأفضل عبر جميع المهام، فإننا نشجع الممارسين على استكشاف تكوينات مختلفة للتقنيات الموضحة في هذا العمل عند السعي لتحسين التدريب على الصفر.
Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of train on English, run on any language'', we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.
References used
https://aclanthology.org/
We study the power of cross-attention in the Transformer architecture within the context of transfer learning for machine translation, and extend the findings of studies into cross-attention when training from scratch. We conduct a series of experime
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all po
Multilingual pre-trained models have achieved remarkable performance on cross-lingual transfer learning. Some multilingual models such as mBERT, have been pre-trained on unlabeled corpora, therefore the embeddings of different languages in the models
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextual multilingual multimodal embeddings. Under a zero-s
In this paper, we describe our system used for SemEval 2021 Task 7: HaHackathon: Detecting and Rating Humor and Offense. We used a simple fine-tuning approach using different Pre-trained Language Models (PLMs) to evaluate their performance for humor